Skip to main content

Advertisement

Log in

Comparison and optimization of strategies for a more profound profiling of the sialylated N-glycoproteomics in human plasma using metal oxide enrichment

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glycosylation is an important posttranslational modification of proteins and plays a crucial role in both cellular functions and secretory pathways. Sialic acids (SAs), a family of nine-carbon-containing acidic monosaccharides, often terminate the glycan structures of cell surface molecules and secreted glycoproteins and perform an important role in many biological processes. Hence, a more profound profiling of the sialylated glycoproteomics may improve our knowledge of this modification and its effects on protein functions. Here, we systematically investigated different strategies to enrich the SA proteins in human plasma using a newly developed technology that utilizes titanium dioxide for sialylated N-glycoproteomics profiling by mass spectrometry. Our results showed that using a combination of a filter-aided sample preparation method, TiO2 chromatography, multiple enzyme digestion, and two-dimensional reversed-phase peptide fractionation led to a more profound profiling of the SA proteome. In total, 982 glycosylation sites in 413 proteins were identified, among which 37.8 % were newly identified, to establish the largest database of sialic acid containing proteins from human plasma.

Numbers of identified SA glycosites with different strategies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SA:

Sialic acid

FASP:

Filter-aided sample preparation

TiO2 :

Titanium dioxide

EGFR:

Epidermal growth factor receptor

RP:

Reversed-phase

LC-MS:

Liquid chromatography–mass spectrometry

Reference

  1. Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3(3):556–566

    Article  Google Scholar 

  2. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867

    Article  CAS  Google Scholar 

  3. Paradis V (2005) Glycomics: a new taste of cirrhosis marker. J Hepatol 43(5):913–914

    Article  CAS  Google Scholar 

  4. Ponnio M, Alho H, Nikkari ST, Olsson U, Rydberg U, Sillanaukee P (1999) Serum sialic acid in a random sample of the general population. Clin Chem 45(10):1842–1849

    CAS  Google Scholar 

  5. Martinez-Duncker I, Salinas-Marin R, Martinez-Duncker C (2011) Towards in vivo imaging of cancer sialylation. Int J Mol Imaging 2011:283497

  6. Kondo A, Miyamoto T, Yonekawa O, Giessing AM, Osterlund EC, Jensen ON (2009) Glycopeptide profiling of beta-2-glycoprotein I by mass spectrometry reveals attenuated sialylation in patients with antiphospholipid syndrome. J Proteomics 73(1):123–133

    Article  CAS  Google Scholar 

  7. Pang PC, Chiu PC, Lee CL, Chang LY, Panico M, Morris HR, Haslam SM, Khoo KH, Clark GF, Yeung WS, Dell A (2011) Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science (New York, NY) 333(6050):1761–1764

    Article  CAS  Google Scholar 

  8. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, Chen CH, Khoo KH, Yu CJ, Yang PC, Hsu TL, Wong CH (2011) Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A 108(28):11332–11337

    Article  CAS  Google Scholar 

  9. Trebbien R, Larsen LE, Viuff BM (2011) Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs. Virol J 8:434

    Article  CAS  Google Scholar 

  10. Cohen M, Varki A (2010) The sialome—far more than the sum of its parts. OMICS 14(4):455–464

    Article  CAS  Google Scholar 

  11. Sun B, Ranish JA, Utleg AG, White JT, Yan X, Lin B, Hood L (2007) Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics 6(1):141–149

    Google Scholar 

  12. Lohrig K, Sickmann A, Lewandrowski U (2011) Strong cation exchange chromatography for analysis of sialylated glycopeptides. Methods Mol Biol 753:299–308

    Article  CAS  Google Scholar 

  13. Nilsson J, Ruetschi U, Halim A, Hesse C, Carlsohn E, Brinkmalm G, Larson G (2009) Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods 6(11):809–811

    Article  CAS  Google Scholar 

  14. Larsen MR, Jensen SS, Jakobsen LA, Heegaard NH (2007) Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6(10):1778–1787

    Article  CAS  Google Scholar 

  15. Wang WLHLZ (2011) Tandem mass spectrometric characterization of fetuin sialylated glycopeptides enriched by TiO2 microcolumn. Chin J Chem 29(11):2229–2235

    Article  CAS  Google Scholar 

  16. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  Google Scholar 

  17. Li D, Fu Y, Sun R, Ling CX, Wei Y, Zhou H, Zeng R, Yang Q, He S, Gao W (2005) pFind: a novel database-searching software system for automated peptide and protein identification via tandem mass spectrometry. Bioinformatics (Oxford, England) 21(13):3049–3050

    Article  CAS  Google Scholar 

  18. Deshpande N, Jensen PH, Packer NH, Kolarich D (2010) GlycoSpectrumScan: fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J Proteome Res 9(2):1063–1075

    Article  CAS  Google Scholar 

  19. Couto N, Barber J, Gaskell SJ (2011) Matrix-assisted laser desorption/ionisation mass spectrometric response factors of peptides generated using different proteolytic enzymes. J Mass Spectrom: JMS 46(12):1233–1240

    Article  CAS  Google Scholar 

  20. Lam MP, Lau E, Siu SO, Ng DC, Kong RP, Chiu PC, Yeung WS, Lo C, Chu IK (2011) Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples. Electrophoresis 32(21):2930–2940

    Article  CAS  Google Scholar 

  21. Gong Y, Li X, Yang B, Ying W, Li D, Zhang Y, Dai S, Cai Y, Wang J, He F, Qian X (2006) Different immunoaffinity fractionation strategies to characterize the human plasma proteome. J Proteome Res 5(6):1379–1387

    Article  CAS  Google Scholar 

  22. Wagner M, Adamczak R, Porollo A, Meller J (2005) Linear regression models for solvent accessibility prediction in proteins. J Comput Biol 12(3):355–369

    Article  CAS  Google Scholar 

  23. Zielinska DF, Gnad F, Schropp K, Wisniewski JR, Mann M (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46(4):542–548

    Article  CAS  Google Scholar 

  24. Thaysen-Andersen M, Packer NH (2012) Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology 22(11):1440–1452

    Article  CAS  Google Scholar 

  25. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4(5):P3

    Article  Google Scholar 

  26. Farrah T, Deutsch EW, Omenn GS, Campbell DS, Sun Z, Bletz JA, Mallick P, Katz JE, Malmstrom J, Ossola R, Watts JD, Lin B, Zhang H, Moritz RL, Aebersold R (2011) A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol Cell Proteomics: MCP 10(9):1–14

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful for financial support from the National Key Program for Basic Research of China (2011CB910603, 2013CB911204); National High Technology Research and Development Program of China (2012AA020203, 2012AA020202); International Scientific Cooperation Project of China (2011DFB30370); and the National Natural Science Foundation of China (21275005,31100591,21235001), Beijing Nova Program (Z121107002512014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wantao Ying or Xiaohong Qian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Ma, C., Han, H. et al. Comparison and optimization of strategies for a more profound profiling of the sialylated N-glycoproteomics in human plasma using metal oxide enrichment. Anal Bioanal Chem 405, 5519–5529 (2013). https://doi.org/10.1007/s00216-013-6971-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6971-5

Keywords

Navigation