Skip to main content
Log in

Application of graphene for the analysis of pharmaceuticals and personal care products in wastewater

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel and reliable analytical method based on a graphene adsorbent for solid-phase extraction (SPE) derivatized with N-tert-butyldimethylsilyl-N- methyltrifluoroacetamide and analyzed by gas chromatography–mass spectrometry was developed for determination of nine pharmaceuticals and personal care products (PPCPs) in wastewater samples. Different ratios of graphene/silica gel were tested, with 20 % graphene/silica gel giving the best performance as an SPE adsorbent. The mean recoveries of the target analytes obtained by 20 % graphene/silica gel SPE ranged from 58.1 to 87.6 %. The limit of quantification ranged from 30 to 259 ng/L and from 13 to 115 ng/L for the influent and effluent, respectively. By comparing the accuracy and precision of 20 % graphene/silica gel and Oasis HLB SPE cartridges, we demonstrated that the method can be satisfactorily used for the analysis of PPCPs in wastewater samples. We applied the method to wastewater samples from a sewage treatment plant near Riverside, California, to track the concentration change of PPCPs in the treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S et al (2012) Environ Health Perspect 120(9):1221–1229

    Article  Google Scholar 

  2. Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Environ Pollut 163:287–303

    Article  CAS  Google Scholar 

  3. Verlicchi P, Al-Aukidy M, Zambello E (2012) Sci Total Environ 429:123–155

    Article  CAS  Google Scholar 

  4. Le Corre KS, Ort C, Kateley D, Allen B, Escher BI, Keller J (2012) Environ Int 45:99–111

    Article  Google Scholar 

  5. Gao P, Ding YJ, Li H, Xagoraraki I (2012) Chemosphere 88(1):17–24

    Article  CAS  Google Scholar 

  6. Gracia-Lor E, Sancho JV, Serrano R, Hernández F (2012) Chemosphere 87(5):453–462

    Article  CAS  Google Scholar 

  7. Scheurer M, Michel A, Brauch HJ, Ruck W, Sacher F (2012) Water Res 46(15):4790–4802

    Article  CAS  Google Scholar 

  8. Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D (2012) Sci Total Environ 430:109–118

    Article  CAS  Google Scholar 

  9. de Jongh CM, Kooij PJF, de Voogt P, ter Laak TL (2012) Sci Total Environ 427–428:70–77

    Article  Google Scholar 

  10. Lavén M, Alsberg T, Yu Y, Adolfsson-Erici M, Sun HW (2009) J Chromatogr A 1216(1):49–62

    Article  Google Scholar 

  11. Baker DR, Kasprzyk-Hordern B (2011) J Chromatogr A 1218(12):1620–1631

    Article  CAS  Google Scholar 

  12. Yu Y, Wu LS (2011) J Chromatogr A 1218(18):2483–2489

    Article  CAS  Google Scholar 

  13. Gracia-Lor E, Martínez M, Sancho JV, Peñuela G, Hernández F (2012) Talanta 99:1011–1023

    Article  CAS  Google Scholar 

  14. Maldaner L, Jardim ICSF (2012) Talanta 100:38–44

    Article  CAS  Google Scholar 

  15. Gros M, Rodríguez-Mozaz S, Barceló D (2012) J Chromatogr A 1248:104–121

    Article  CAS  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666–669

    Article  CAS  Google Scholar 

  17. Geim AK, Novoselov KS (2007) Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  18. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) Angew Chem Int Ed 48(26):4785–4787

    Article  CAS  Google Scholar 

  19. Geim AK (2009) Science 324(5934):1530–1534

    Article  CAS  Google Scholar 

  20. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R (2009) J Am Chem Soc 131(23):8262–8270

    Article  CAS  Google Scholar 

  21. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

  22. Yoo EJ, Okata T, Akita T, Kohyama M, Nakamura JJ, Honma I (2009) Nano Lett 9(6):2255–2259

    Article  CAS  Google Scholar 

  23. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8(10):3498–3502

    Article  CAS  Google Scholar 

  24. Dong XL, Cheng JS, Li JH, Wang YS (2010) Anal Chem 82(14):6208–6214

    Article  CAS  Google Scholar 

  25. Chen J, Zou J, Zeng J, Song X, Ji J, Wang Y, Ha J, Chen X (2010) Anal Chim Acta 678(1):44–49

    Article  CAS  Google Scholar 

  26. Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G (2011) J Chromatogr A 1218(2):197–204

    Article  CAS  Google Scholar 

  27. Zhang H, Low WP, Lee HK (2012) J Chromatogr A 1233:16–21

    Article  CAS  Google Scholar 

  28. Hummers WS, Offeman RE (1958) J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  29. Zhou Y, Bao QL, Tang LAL, Zhong YL, Loh KP (2009) Chem Mater 21(13):2950–2956

    Article  CAS  Google Scholar 

  30. Wang HL, Robinson JT, Li XL, Dai HJ (2009) J Am Chem Soc 131(29):9910–9911

    Article  CAS  Google Scholar 

  31. Yu Y, Wu LS (2012) Talanta 89:258–263

    Article  CAS  Google Scholar 

  32. Liu Q, Shi J, Jiang G (2012) TrAC Trends Anal Chem 37:1–11

    Article  Google Scholar 

Download references

Acknowledgments

We thank Frederick Ernst for his help during the sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yu.

Electronic supplementary material

ESM 1

(PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Wu, L. Application of graphene for the analysis of pharmaceuticals and personal care products in wastewater. Anal Bioanal Chem 405, 4913–4919 (2013). https://doi.org/10.1007/s00216-013-6867-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6867-4

Keywords

Navigation