Skip to main content
Log in

Ultrasound-assisted liquid-phase microextraction based on a nanostructured supramolecular solvent

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Novel ultrasonically enhanced supramolecular solvent microextraction (USESSM) then high-performance liquid chromatography with ultraviolet detection have been used for extraction and determination of phthalates in water and cosmetics. Coacervates consisting of decanoic acid-based nano-structured aggregates, specifically reverse micelles, have been used the first time as solvents for ultrasound-assisted emulsification microextraction (USAEME). Sonication accelerated mass transfer of the target analytes into the nano-structured solvent from the aqueous sample, thus reducing extraction time. Several conditions affecting extraction efficiency, for example the concentrations of major components of the supramolecular solvent (tetrahydrofuran and decanoic acid), sample solution pH, salt addition, and ultrasonication time, were investigated and optimized. Under the optimum conditions, preconcentration of the analytes ranged from 176 to 412-fold and the linear range was 0.5–100 μg L−1, with correlation coefficients (R 2) ≥ 0.9984. The detection sensitivity of the method was excellent, with limits of detection (LOD, S/N = 3) in the range 0.10–0.70 μg L−1 and precision in the range 4.1–11.7 % (RSD, n = 5). This method was successfully used for analysis of phthalates in water and cosmetics, with good recovery of spiked phthalates (91.0–108.5 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) Chemosphere 35:667–749

    Article  CAS  Google Scholar 

  2. Gomez-Hens A, Aguilar-Caballos MP (2003) Trends Anal Chem 22:847–857

    Article  CAS  Google Scholar 

  3. Serodio P, Nogueira JMF (2006) Water Res 40:2572–2582

    Article  CAS  Google Scholar 

  4. Feng Y, Zhua J, Sensenstein R (2005) Anal Chim Acta 538:41–48

    Article  CAS  Google Scholar 

  5. Jen JF, Liu TC (2006) J Chromatogr A 1130:28–33

    Article  CAS  Google Scholar 

  6. Liang P, Xu J, Li Q (2009) Anal Chim Acta 609:53–58

    Article  Google Scholar 

  7. Balafas D, Shaw KJ, Whitfield FB (1999) Food Chem 65:279–287

    Article  CAS  Google Scholar 

  8. Huber WW, Grasl-Kraupp B, Schulte-Hermann R (1996) Crit Rev Toxicol 26:365–481

    Article  CAS  Google Scholar 

  9. Mylchreest E, Cattley RC, Foster PMD (1998) Toxicol Sci 43:47–60

    CAS  Google Scholar 

  10. Agarwal DK, Eustis S, Lamb IJC, Reel JR, Kluwe WM (1986) Environ Health Perspect 65:343–350

    CAS  Google Scholar 

  11. USEPA (1991) National Primary Drinking Water Regulations, Federal Register. US Environmental Protection Agency, Washington, DC

  12. Xu Q, Yin X, Wu S, Wang M, Wen Z, Gu Z (2010) Microchim Acta 168:267–275

    Article  CAS  Google Scholar 

  13. Batlle R, Nerìn C (2004) J Chromatogr A 1045:29–35

    Article  CAS  Google Scholar 

  14. Sablayrolles C, Montréjaud-Vignoles M, Benanou D, Patria L, Treilhou M (2005) J Chromatogr A 1072:233–242

    Article  CAS  Google Scholar 

  15. Kotowska UK, Garbowska VI (2006) Anal Chim Acta 560:110–117

    Article  CAS  Google Scholar 

  16. Cano JM, Marín ML, Sánchez A, Hernandis ML (2002) J Chromatogr A 963:401–409

    Article  CAS  Google Scholar 

  17. Polo M, Llompart M, Garcia-Jares C, Cela R (2005) J Chromatogr A 1072:63–72

    Article  CAS  Google Scholar 

  18. Peñalver A, Pocurull E, Borrull F, Marcé RM (2001) J Chromatogr A 922:377–384

    Article  Google Scholar 

  19. Brossa L, Marcé RM, Borrull F, Pocurull E (2003) J Chromatogr A 998:41–50

    Article  CAS  Google Scholar 

  20. Holadová K, Prokůpková G, Hajšlová J, Poustka J (2007) Anal Chim Acta 582:24–33

    Article  Google Scholar 

  21. Zhu J (2006) Environ Sci Technol 40:5276–5281

    Article  CAS  Google Scholar 

  22. Watanabe H, Tanaka H (1978) Talanta 25:585–589

    Article  CAS  Google Scholar 

  23. Ruiz FJ, Rubio S, Pérez-Bendito D (2007) Anal Chem 79:7473–7484

    Article  CAS  Google Scholar 

  24. Costi EM, Sicilia MD, Rubio S (2010) J Chromatogr A 1217:1447–1454

    Article  CAS  Google Scholar 

  25. García-Fonseca S, Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2010) J Chromatogr A 1217:2376–2382

    Article  Google Scholar 

  26. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) J Chromatogr A 1216:530–539

    Article  Google Scholar 

  27. López-Jiménez FJ, Rubio S, Pérez-Bendito D (2010) Food Chem 121:763–769

    Article  Google Scholar 

  28. Costi EM, Sicilia MD, Rubio S (2010) J Chromatogr A 1217:6250–6257

    Article  CAS  Google Scholar 

  29. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2008) J Chromatogr A 1203:168–176

    Article  Google Scholar 

  30. Jafarvand S, Shemirani F (2011) J Sep Sci 34:455–461

    Article  CAS  Google Scholar 

  31. Cardeñosa V, Lunar ML, Rubio S (2011) J Chromatogr A 1218:8996–9002

    Article  Google Scholar 

  32. Mason TJ (1999) Sonochemistry. Oxford University Press, New York

    Google Scholar 

  33. Priego CF, Luque MD (2007) Anal Bioanal Chem 387:249–257

    Article  Google Scholar 

  34. Regueiro J, Llompart M, Garcia JC, Garcia MJC, Cela R (2008) J Chromatogr A 1190:27–38

    Article  CAS  Google Scholar 

  35. Dorshow RB, Bunton CA, Nicoli DF (1983) J Phys Chem 87:1409–1416

    Article  CAS  Google Scholar 

  36. Huang X, Han Y, Wang Y, Cao M, Wang Y (2008) Colloids Surf A 325:26–32

    Article  CAS  Google Scholar 

  37. Basheer C, Lee HK (2004) J Chromatogr A 1057:163–167

    Article  CAS  Google Scholar 

  38. Liang P, Xu J, Li Q (2008) Anal Chim Acta 609:53–57

    Article  CAS  Google Scholar 

  39. Yan H, Cheng X, Liu B (2011) J Chromatogr B 879:2507–2512

    Article  CAS  Google Scholar 

  40. Ling W, Gui-bin J, Ya-qi C, Bin H, Ya-wei W, Da-zhong S (2007) J Environ Sci 19:874–878

    Article  Google Scholar 

  41. Cao XL (2010) Compr Rev Food Sci F 9:21–43

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful for financial support of this work by the Tarbiat Modares University and National Elites Foundation, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Yamini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradi, M., Yamini, Y., Tayyebi, M. et al. Ultrasound-assisted liquid-phase microextraction based on a nanostructured supramolecular solvent. Anal Bioanal Chem 405, 4235–4243 (2013). https://doi.org/10.1007/s00216-013-6810-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6810-8

Keywords

Navigation