Skip to main content

Advertisement

Log in

Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lateral-flow enzyme immunochromatography coupled with an immunomagnetic step was developed for rapid detection of Listeria monocytogenes in food matrices. The target bacteria was first separated and concentrated by magnetic nanoparticles containing the enzyme and directly applied to the assay system to induce an antigen–antibody reaction without any additional steps. The color signals produced by an enzyme–substrate reaction at a specific site on the immunostrip were found to be directly proportional to the concentration of L. monocytogenes in the sample. The detection concept was demonstrated by performing an enzyme immunoassay on a microtiter well prior to applying it to the lateral-flow assay. Results of the chromatographic analysis yield a limit of detection of 95 and 97 ± 19.5 CFU/mL in buffer solution and 2 % milk sample, respectively. In addition to the high sensitivity, it was also possible to shorten the separation and detection time to within 2 h. The system also showed no cross-reactivity with other bacteria (e.g., Escherichia coli O157:H7, Salmonella typhimurium, and Salmonella enteritidis). The analytical procedure developed will enable us to not only utilize the assay in the field where fast screening for pathogenic agents is required but also as a preventive measure to contain disease outbreak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Emerg Infect Dis 17:7–15

    Google Scholar 

  2. Shyamal KM, Ronald N, Frederick CP (1986) Appl Environ Microbiol 52:510–514

    Google Scholar 

  3. Schelch WF, Acheson D (2000) Clin Infect Dis 31:770–775

    Article  Google Scholar 

  4. Dykes GA, Dworaczek M (2002) Lett Appl Microbiol 35:538–542

    Article  CAS  Google Scholar 

  5. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) Biotechnol Adv 28:232–254

    Article  CAS  Google Scholar 

  6. Scotter SL, Langton S, Lombard B, Schulten S, Nagelkerke N, Veld PH, Rollier P, Lahellec C (2001) Int J Food Microbiol 64:295–306

    Article  CAS  Google Scholar 

  7. Reissbrodt R (2004) Int J Food Microbiol 95:1–9

    Article  CAS  Google Scholar 

  8. Sütterlin K, Englert R, Schmidt-Wieland T, Schmitt J, Reischl U, Lehn NJ (2003) Clin Microbiol 41:3449

    Article  Google Scholar 

  9. Navas J, Ortiz S, Lopez P, Jantzen MM, Lopez V, Martinez JV (2006) Foodborne Pathog Dis 3:347–354

    Article  CAS  Google Scholar 

  10. Ueda S, Maruyama T, Kuwabara Y (2006) Biocontrol Sci 11:129–134

    Article  CAS  Google Scholar 

  11. Xiulan S, Xiaolian Z, Jian T, Zhou J, Chu FS (2005) Int J Food Microbiol 99:185–194

    Article  Google Scholar 

  12. Wang J, Wang X, Li Y, Yan S, Zhou Q, Gao B, Peng J, Du J, Fu Q, Jia S, Zhang J, Zhan L (2012) Anal Sci 28:237–241

    Article  CAS  Google Scholar 

  13. Seo SM, Cho IH, Kim JH, Jeon JW, Oh EK, Yu HS, Shin SB, Lee HJ, Paek SH (2009) Bull Korean Chem Soc 30:2993–2998

    Article  CAS  Google Scholar 

  14. Muldoon MT, Allen AC, Gonzalez V, Sutzko M, Klaus L (2012) J AOAC Int 95:850–859

    Article  CAS  Google Scholar 

  15. Alles S, Curry S, Almy D, Jagadeesan B, Rice J, Mozola M (2012) J AOAC Int 95:424–434

    Article  CAS  Google Scholar 

  16. Kitao T, Miyoshi-Akiyama T, Shimada K, Tanaka M, Narahara K, Saito N, Kirikae TJ (2010) Antimicrob Chemother 65:1382–1386

    Article  CAS  Google Scholar 

  17. Noguera P, Posthuma-Trumpie GA, Van Tuil M, Van der Wal FJ, De Boer A, Moer APHA, Van Amerongen A (2011) Anal Bioanal Chem 399:831–838

    Article  CAS  Google Scholar 

  18. Galikowska E, Kunikowska D, Tokarska-Pietrzak E, Dziadziuszko H, Łoś JM, Golec P, Węgrzyn G, Łoś M (2011) Eur J Clin Microbiol Infect Dis 30:1067–1073

    Article  CAS  Google Scholar 

  19. Johnson RP, Durham RJ, Johnson ST, Macdonald LA, Jeffrey SR, Butman BT (1995) Appl Environ Microbiol 61:386–388

    CAS  Google Scholar 

  20. Cho JH, Paek EH, Cho IH, Paek SH (2005) Anal Chem 77:4091–4097

    Article  CAS  Google Scholar 

  21. Seo SM, Cho IH, Jeon JW, Cho HK, Oh EK, Yu HS, Shin SB, Lee HJ, Paek SH (2010) J Food Protect 73:1466–1473

    Google Scholar 

  22. Wang Y, Ravindranath S, Irudayaraj J (2011) Anal Bioanal Chem 399:1271–1278

    Article  CAS  Google Scholar 

  23. Ravindranath S, Wang Y, Irudayaraj J (2011) Sens Actuators B Chem 152:183–190

    Article  Google Scholar 

  24. Cho JH, Han SM, Paek EH, Cho IH, Paek SH (2006) Anal Chem 78:793–800

    Article  CAS  Google Scholar 

  25. Binder R, Archimbaud Y (2000) Regul Toxicol Pharm 31:S23–S26

    Article  CAS  Google Scholar 

  26. Abadias M, Usall J, Anguera M, Solson C, Vinas I (2008) Int J Food Microbiol 123:121–129

    Article  CAS  Google Scholar 

  27. Atanassova V, Reich F, Klein G (2008) J Food Prot 71:860–864

    Google Scholar 

  28. Esteban JI, Oporto B, Aduriz G, Juste RA, Hurtado A (2008) Int J Food Microbiol 123:177–182

    Article  Google Scholar 

  29. Murphy NM, McLauchlin J, Ohai C, Grant KA (2007) Int J Food Microbiol 120:110–119

    Article  CAS  Google Scholar 

  30. Hoffman AD, Wiedmann M (2001) J Food Prot 64:1521–1526

    CAS  Google Scholar 

  31. Shearer AEH, Strapp CM, Joerger RD (2001) J Food Prot 64:788–795

    CAS  Google Scholar 

  32. Heather S, Helene M (2006) Infect Immun 74:6675–6681

    Article  Google Scholar 

  33. West HG (2008) Appetite 51:25–29

    Article  Google Scholar 

  34. Gupta M, Irudayaraj J, Schmilovitch Z, Mizrach A (2006) Trans ASABE 49:1249–1256

    CAS  Google Scholar 

  35. Yu C, Ganjoo A, Jain H, Pantano C, Irudayaraj J (2005) Anal Chem 78:2500–2506

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by funding from the Center for Food Safety Engineering through a collaborative grant between USDA-ARS and Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Irudayaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, IH., Irudayaraj, J. Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes . Anal Bioanal Chem 405, 3313–3319 (2013). https://doi.org/10.1007/s00216-013-6742-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6742-3

Keywords

Navigation