Skip to main content
Log in

Metabonomic classification and detection of small molecule biomarkers of malignant pleural effusions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To date, most research has been focused on the benign molecules in pleural effusions, and diagnosis of malignant ones still remains challenging. In the present study, targeting the small molecules as potential biomarkers to predict the malignancy of the effusions, the metabolic profiles of 81 clinical pleural effusions (41 malignant effusions from lung cancer and 40 benign ones) were investigated through a NMR-based metabonomic approach. In 1H NMR analysis, a total of ten small molecules in the effusions were simultaneously determined. Significantly higher mean values of valine, lactate, and alanine and markedly lower signal intensities of acetoacetate, trimethylamine-N-oxide, and α- and β-glucose were observed in malignant pleural effusions compared with those in benign ones. DFA modeling of NMR spectra subjected to a validation allowed the malignant effusions to be discriminated from benign ones in both training and validation groups. Currently, the conventional clinical analyses on chemical constituents in effusions could not provide a reliable prediction of malignancy of the effusions; the present results revealed that the small molecules might serve as useful biomarkers for diagnosis of the effusions, and the present NMR-based metabonomic approach provided a valuable potential to rapidly and sensitively predict the malignancy of the pleural effusions.

NMR based metabonomic analysis of pleural effusions and diagnostic results with discriminant function analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

BPE:

Benign pleural effusion

CA:

Cancer antigen

CEA:

Carcinoembryonic antigen

DFA:

Discriminant function analysis

LDH:

Lactate dehydrogenase

MPE:

Malignant pleural effusion

NADH:

Nicotinamide adenine dinucleotide

NMR:

Nuclear magnetic resonance

OPLS-DA:

Orthogonal PLS-DA

PCA:

Principle component analysis

PLS-DA:

Partial least squares discriminant analysis

TMAO:

Trimethylamine-N-oxide

Reference

  1. Oba Y, Abu-Salah T (2012) The prevalence and diagnostic significance of eosinophilic pleural effusions: a meta-analysis and systematic review. Respiration 83(3):198–208

    Article  Google Scholar 

  2. Burgess LJ (2004) Biochemical analysis of pleural, peritoneal and pericardial effusions. Clin Chim Acta 343(1–2):61–84

    Article  CAS  Google Scholar 

  3. McGrath EE, Blades Z, Needham J, Anderson PB (2009) A systematic approach to the investigation and diagnosis of a unilateral pleural effusion. Int J Clin Pract 63(11):1653–1659

    Article  CAS  Google Scholar 

  4. Marel M, Zrustova M, Stasny B, Light RW (1993) The incidence of pleural effusion in a well-defined region. Epidemiologic study in central Bohemia. Chest 104(5):1486–1489

    Article  CAS  Google Scholar 

  5. Johnston RF, Loo RV (1996) Hepatic hydrothorax. Studies to determine the source of fluid and report of 13 cases. Ann Intern Med 61(3):385–401

    Google Scholar 

  6. D'Souza R, Doshi A, Bhojraj S, Shetty P, Udwadia Z (2002) Massive pleural effusion as the presenting feature of a subarachnoid-pleural fistula. Respiration 69(1):96–99

    Article  Google Scholar 

  7. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18(3):581–592

    Article  CAS  Google Scholar 

  8. Khurshid R, Shore N, Saleem M, Naz M, Zameer N (2009) Diagnostic significance of adenosine deaminase in pleural tuberculosis. J Ayub Med Coll Abbottabad 21(1):83–85

    Google Scholar 

  9. Porcel JM, Light RW (2008) Pleural effusions due to pulmonary embolism. Curr Opin Pulm Med 14(4):337–342

    Article  Google Scholar 

  10. Hamm H, Light RW (1997) Parapneumonic effusion and empyema. Eur Respir J 10(5):1150–1156

    Article  CAS  Google Scholar 

  11. Uzbeck MH, Almeida FA, Sarkiss MG, Morice RC, Jimenez CA, Eapen GA, Kennedy MP (2010) Management of malignant pleural effusions. Adv Ther 27(6):334–347

    Article  Google Scholar 

  12. Porcel JM, Chorda J, Cao G, Esquerda A, Ruiz-Gonzalez A, Vives M (2007) Comparing serum and pleural fluid pro-brain natriuretic peptide (NT-proBNP) levels with pleural-to-serum albumin gradient for the identification of cardiac effusions misclassified by Light's criteria. Respirology 12:654–659

    Article  Google Scholar 

  13. How SH, Liam CK, Chin SP, Med AZ (2005) The utility of tumor markers in the diagnosis of neoplastic pleural effusions. Int Med J 4(2):30–37

    Google Scholar 

  14. McGrath EE, Warriner D, Anderson PB (2010) The use of non-routine pleural fluid analysis in the diagnosis of pleural effusion. Respir Med 104(8):1092–1100

    Article  Google Scholar 

  15. Shitrit D, Zingerman B, Shitrit ABG, Shlomi D, Kramer MR (2005) Diagnostic value of CYFRA 21–1, CEA, CA 19–9, CA 15–3, and CA 125 assays in pleural effusions: analysis of 116 cases and review of the literature. Oncologist 10(7):501–507

    Article  CAS  Google Scholar 

  16. Neragi-Miandoab S (2006) Malignant pleural effusion, current and evolving approaches for its diagnosis and management. Lung Cancer 54(1):1–9

    Article  Google Scholar 

  17. Waters NJ, Waterfield CJ, Farrant RD, Holmes E, Nicholson JK (2005) Metabonomic deconvolution of embedded toxicity: application to thioacetamide hepato- and nephrotoxicity. Chem Res Toxicol 18(4):639–654

    Article  CAS  Google Scholar 

  18. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1(2):153–161

    Article  CAS  Google Scholar 

  19. Garrod S, Humpher E, Connor SC, Connelly JC, Spraul M, Nicholson JK, Holmes E (2001) High-resolution 1H NMR and magic angle spinning NMR spectroscopic investigation of the biochemical effects of 2-bromoethanamine in intact renal and hepatic tissue. Magn Reson Med 45(5):781–790

    Article  CAS  Google Scholar 

  20. Holmes E, Nicholson JK, Nicholls AW, Lindon JC, Connor SC, Polley S, Connelly J (1998) The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urine. Chemom Intell Lab Syst 44(1–2):245–255

    Article  CAS  Google Scholar 

  21. Shariff MIF, Ladep NG, Cox IJ, Williams HRT, Okeke E, Malu A, Thillainayagam AV, Crossey MME, Khan SA, Thomas HC, Taylor-Robinson SD (2010) Characterization of urinary biomarkers of hepatocellular carcinoma using magnetic resonance spectroscopy in a Nigerian population. J Proteome Res 9(2):1096–1103

    Article  CAS  Google Scholar 

  22. Tsutsui H, Maeda T, Toyo'oka T, Min JZ, Inagaki S, Higashi T, Kagawa Y (2010) Practical analytical approach for the identification of biomarker candidates in prediabetic state based upon metabonomic study by ultraperformance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry. J Proteome Res 9(8):3912–3922

    Article  CAS  Google Scholar 

  23. Wang CH, Gee MJ, Yang C, Su YC (2006) A new model for outcome prediction in intra-abdominal sepsis by the linear discriminant function analysis of IL-6 and IL-10 at different heart rates. J Surg Res 132(1):46–51

    Article  CAS  Google Scholar 

  24. Sariyar-Akbulut B (2009) Rapid differentiation of new isolates with MALDI-TOF mass spectrometry via discriminant function analysis based on principal components. Korean J Chem Eng 26(6):1645–1651

    Article  CAS  Google Scholar 

  25. Tiziani S, Emwas AH, Lodi A, Ludwig C, Bunce CM, Viant MR, Günther UL (2008) Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Ana Biochem 377(1):16–23

    Article  CAS  Google Scholar 

  26. Nicholson JK, Lindon JC, Holmes E (1999) Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  CAS  Google Scholar 

  27. Holmes E, Foxall PJ, Nicholson JK, Neild GH, Brown SM, Beddell CR, Sweatman BC, Rahr E, Lindon JC, Spraul M (1994) Automatic data reduction and pattern recognition methods for analysis of 1H nuclear magnetic resonance spectra of human urine from normal and pathological states. Anal Biochem 220(2):284–296

    Article  CAS  Google Scholar 

  28. Light MD (2002) Pleural effusion. N Engl J Med 346(25):1971–1977

    Article  Google Scholar 

  29. Sturgeon C (2002) Practice guidelines for tumor marker use in the clinic. Clin Chem 48(8):1151–1159

    CAS  Google Scholar 

  30. Gedik GK, Kiratli PO, Tascioglu B, Aras T (2006) Comparison of bone scintigraphy with serum tumor markers of CA 15–3 and carcinoembryonic antigen in patients with breast carcinoma. Saudi Med J 27(3):317–322

    Google Scholar 

  31. Lai HS, Lee JC, Lee PH, Wang ST, Chen WJ (2005) Plasma free amino acid profile in cancer patients. Semin Cancer Biol 15(4):267–276

    Article  CAS  Google Scholar 

  32. Proenza AM, Oliver J, Palou A, Roca P (2003) Breast and lung cancer are associated with a decrease in blood cell amino acid content. J Nutr Biochem 14(3):133–138

    Article  CAS  Google Scholar 

  33. Sauer LA, Dauchy RT (1998) Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats. Cancer Res 43(8):3497–3503

    Google Scholar 

  34. Sauer LA, Blask DE, Dauchy RT (2007) Dietary factors and growth and metabolism in experimental tumors. J Nutr Biochem 18(10):637–649

    Article  CAS  Google Scholar 

  35. Ferreira LMR (2010) Cancer metabolism: the Warburg effect today. Exp Mol Pathol 89(3):372–380

    Article  CAS  Google Scholar 

  36. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899

    Article  CAS  Google Scholar 

  37. Sillos EM, Shenep JL, Burghen GA, Pui CH, Behm FG, Sandlund JT (2001) Lactic acidosis: a metabolic complication of hematologic malignancies: case report and review of the literature. Cancer 92(9):2237–2246

    Article  CAS  Google Scholar 

  38. Foxall PJD, Mellotte GJ, Bending MR, Lindon JC, Nicholson JK (1993) NMR spectroscopy as a novel approach to the monitoring of renal transplant function. Kidney Int 43(1):234–245

    Article  CAS  Google Scholar 

  39. Kim KB, Yang JY, Kwack SJ, Park KL, Kim HS, Ryu DH, Kim YJ, Hwang GS, Lee BM (2010) Toxicometabolomics of urinary biomarkers for human gastric cancer in a mouse model. J Toxicol Environ Health A 73(21–22):1420–1430

    Article  CAS  Google Scholar 

  40. Carrola J, Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Carreira IM, Bernardo J, Gomes A, Sousa V, Carvalho L, Duarte IF (2011) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 10(1):221–230

    Article  CAS  Google Scholar 

  41. Rocha CM, Carrola J, Barros AS, Gil AM, Goodfellow BJ, Carreira IM, Bernardo J, Gomes A, Sousa V, Carvalho L, Duarte IF (2011) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. J Proteome Res 10(9):4314–4324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project of Six Major Talents of Jiangsu Province (2009), National Natural Science Fund for Creative Research Groups of China (21121091), and the Fund of Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine (Y11005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Mei Zhou or Jian-Xin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, XM., He, CC., Liu, YM. et al. Metabonomic classification and detection of small molecule biomarkers of malignant pleural effusions. Anal Bioanal Chem 404, 3123–3133 (2012). https://doi.org/10.1007/s00216-012-6432-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6432-6

Keywords

Navigation