Skip to main content
Log in

Development of a novel method for quantification of sterols and oxysterols by UPLC-ESI-HRMS: application to a neuroinflammation rat model

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cholesterol and oxysterols are involved as key compounds in the development of severe neurodegenerative diseases and in neuroinflammation processes. Monitoring their concentration changes under pathological conditions is of interest to get insights into the role of lipids in diseases. For numerous years, liquid chromatography coupled to mass spectrometry has been the method of choice for metabolites identification and quantification in biological samples. However, sterols and oxysterols are relatively apolar molecules poorly adapted to electrospray ionization (ESI). To circumvent this drawback, we developed a novel and robust analytical method involving derivatization of these analytes in cholesteryl N-4-(N,N-dimethylamino)phenyl carbamates under alkaline conditions followed by ultra-performance liquid chromatography–high resolution mass spectrometry analysis (UPLC-HRMS). Optimized UPLC conditions led to the separation of a mixture of 11 derivatized sterols and oxysterols especially side chain substituted derivatives after 6 min of chromatographic run. High sensitivity time-of-flight mass analysis allowed analytes to be detected in the nanomolar range. The method was validated for the analysis of oxysterols and sterols in mice brain in respect of linearity, limits of quantification, accuracy, precision, analyte stability, and recovery according to the Food and Drug Administration (FDA) guidelines. The developed method was successfully applied to investigate the impact of lipopolysaccharide (LPS) treatment on the rat cerebral steroidome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jurevics H, Morell P (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 64(2):895–901

    Article  CAS  Google Scholar 

  2. Bjorkhem I (2006) Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med 260(6):493–508

    Article  CAS  Google Scholar 

  3. Bjorkhem I, Lutjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39(8):1594–1600

    CAS  Google Scholar 

  4. Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 96(13):7238–7243

    Article  CAS  Google Scholar 

  5. Lutjohann D, Breuer O, Ahlborg G, Nennesmo I, Siden A, Diczfalusy U, Bjorkhem I (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A 93(18):9799–9804

    Article  CAS  Google Scholar 

  6. Olkkonen VM, Lehto M (2004) Oxysterols and oxysterol binding proteins: role in lipid metabolism and atherosclerosis. Ann Med 36(8):562–572

    Article  CAS  Google Scholar 

  7. Bjorkhem I, Cedazo-Minguez A, Leoni V, Meaney S (2009) Oxysterols and neurodegenerative diseases. Mol Aspects Med 30(3):171–179

    Article  Google Scholar 

  8. Brown AJ, Jessup W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142(1):1–28

    Article  CAS  Google Scholar 

  9. Guardiola F, Codony R, Addis PB, Rafecas M, Boatella J (1996) Biological effects of oxysterols: current status. Food Chem Toxicol 34(2):193–211

    Article  CAS  Google Scholar 

  10. Leoni V, Masterman T, Patel P, Meaney S, Diczfalusy U, Bjorkhem I (2003) Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood–brain and blood-cerebrospinal fluid barriers. J Lipid Res 44(4):793–799

    Article  CAS  Google Scholar 

  11. Schroepfer GJ Jr (2000) Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev 80(1):361–554

    CAS  Google Scholar 

  12. Wang DQ, Afdhal NH (2001) Good cholesterol, bad cholesterol: role of oxysterols in biliary tract diseases. Gastroenterology 121(1):216–218

    Article  CAS  Google Scholar 

  13. Dzeletovic S, Breuer O, Lund E, Diczfalusy U (1995) Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem 225(1):73–80

    Article  CAS  Google Scholar 

  14. Mast N, Norcross R, Andersson U, Shou M, Nakayama K, Bjorkhem I, Pikuleva IA (2003) Broad substrate specificity of human cytochrome P450 46A1 which initiates cholesterol degradation in the brain. Biochemistry 42(48):14284–14292

    Article  CAS  Google Scholar 

  15. DeBarber AE, Lutjohann D, Merkens L, Steiner RD (2008) Liquid chromatography-tandem mass spectrometry determination of plasma 24S-hydroxycholesterol with chromatographic separation of 25-hydroxycholesterol. Anal Biochem 381(1):151–153

    Article  CAS  Google Scholar 

  16. Karuna R, von Eckardstein A, Rentsch KM (2009) Dopant assisted-atmospheric pressure photoionization (DA-APPI) liquid chromatography-mass spectrometry for the quantification of 27-hydroxycholesterol in plasma. J Chromatogr B Anal Technol Biomed Life Sci 877(3):261–268

    Article  CAS  Google Scholar 

  17. Lembcke J, Ceglarek U, Fiedler GM, Baumann S, Leichtle A, Thiery J (2005) Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. J Lipid Res 46(1):21–26

    Article  CAS  Google Scholar 

  18. Lu B, Zhang Y, Wu X, Shi J (2007) Separation and determination of diversiform phytosterols in food materials using supercritical carbon dioxide extraction and ultraperformance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Anal Chim Acta 588(1):50–63

    Article  CAS  Google Scholar 

  19. Raith K, Brenner C, Farwanah H, Muller G, Eder K, Neubert RH (2005) A new LC/APCI-MS method for the determination of cholesterol oxidation products in food. J Chromatogr A 1067(1–2):207–211

    CAS  Google Scholar 

  20. Griffiths WJ, Wang Y, Alvelius G, Liu S, Bodin K, Sjovall J (2006) Analysis of oxysterols by electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 17(3):341–362

    Article  CAS  Google Scholar 

  21. Griffiths WJ, Hornshaw M, Woffendin G, Baker SF, Lockhart A, Heidelberger S, Gustafsson M, Sjovall J, Wang Y (2008) Discovering oxysterols in plasma: a window on the metabolome. J Proteome Res 7(8):3602–3612

    Article  CAS  Google Scholar 

  22. Honda A, Yamashita K, Hara T, Ikegami T, Miyazaki T, Shirai M, Xu G, Numazawa M, Matsuzaki Y (2009) Highly sensitive quantification of key regulatory oxysterols in biological samples by LC-ESI-MS/MS. J Lipid Res 50(2):350–357

    Article  CAS  Google Scholar 

  23. Honda A, Yamashita K, Miyazaki H, Shirai M, Ikegami T, Xu G, Numazawa M, Hara T, Matsuzaki Y (2008) Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J Lipid Res 49(9):2063–2073

    Article  CAS  Google Scholar 

  24. Jiang X, Ory DS, Han X (2007) Characterization of oxysterols by electrospray ionization tandem mass spectrometry after one-step derivatization with dimethylglycine. Rapid Commun Mass Spectrom 21(2):141–152

    Article  CAS  Google Scholar 

  25. Karu K, Hornshaw M, Woffendin G, Bodin K, Hamberg M, Alvelius G, Sjovall J, Turton J, Wang Y, Griffiths WJ (2007) Liquid chromatography-mass spectrometry utilizing multi-stage fragmentation for the identification of oxysterols. J Lipid Res 48(4):976–987

    Article  CAS  Google Scholar 

  26. Tang Z, Guengerich FP (2010) Dansylation of unactivated alcohols for improved mass spectral sensitivity and application to analysis of cytochrome P450 oxidation products in tissue extracts. Anal Chem 82(18):7706–7712

    Article  CAS  Google Scholar 

  27. US Food and Drug Administration (2001) Guidance for industry: bioanalytical method validation. FDA, Rockville, MD

  28. Satchell DPN, Satchell RS (1975) Acylation by ketenes and isocyanates: mechanistic comparison. Chem Soc Rev 4(2):231–250

    Article  CAS  Google Scholar 

  29. Kucukbenli E, Sonkar K, Sinha N, de Gironcoli S (2012) Complete 13C NMR chemical shifts assignment for cholesterol crystals by combined CP-MAS spectral editing and ab initio GIPAW calculations with dispersion forces. J Phys Chem A 116(14):3765–3769

    Article  CAS  Google Scholar 

  30. Rochat B (2012) Quantitative/qualitative analysis using LC-HRMS: the fundamental step forward for clinical laboratories and clinical practice. Bioanalysis 4(14):1709–1711

    Article  CAS  Google Scholar 

  31. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18(20):2401–2414

    Article  CAS  Google Scholar 

  32. Honda A, Miyazaki T, Ikegami T, Iwamoto J, Maeda T, Hirayama T, Saito Y, Teramoto T, Matsuzaki Y (2011) Cholesterol 25-hydroxylation activity of CYP3A. J Lipid Res 52(8):1509–1516

    Article  CAS  Google Scholar 

  33. Lund EG, Kerr TA, Sakai J, Li WP, Russell DW (1998) cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J Biol Chem 273(51):34316–34327

    Article  CAS  Google Scholar 

  34. Murphy RC, Johnson KM (2008) Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J Biol Chem 283(23):15521–15525

    Article  CAS  Google Scholar 

  35. Pikuleva IA (2006) Cholesterol-metabolizing cytochromes P450. Drug Metab Dispos 34(4):513–520

    Article  CAS  Google Scholar 

  36. Smith LL (1987) Cholesterol autoxidation 1981–1986. Chem Phys Lipids 44(2–4):87–125

    Article  CAS  Google Scholar 

  37. Diczfalusy U, Olofsson KE, Carlsson AM, Gong M, Golenbock DT, Rooyackers O, Flaring U, Bjorkbacka H (2009) Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J Lipid Res 50(11):2258–2264

    Article  CAS  Google Scholar 

  38. Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Berthier A, Bessede G, Corcos L, Gambert P, Neel D, Lizard G (2005) Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol 21(2):97–114

    Article  CAS  Google Scholar 

  39. Prunet C, Montange T, Vejux A, Laubriet A, Rohmer JF, Riedinger JM, Athias A, Lemaire-Ewing S, Neel D, Petit JM, Steinmetz E, Brenot R, Gambert P, Lizard G (2006) Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A 69(5):359–373

    Google Scholar 

Download references

Acknowledgment

The post-doctoral position of S.A. was funded by ANR Chol AD (French-Canadian Cooperation-2010-MALZ-10303) and the PhD position of M.G. by Technologie Servier (Orléans, France). O.L. is indebted to Fondation pour la Recherche Médicale, Région-Île-de-France and Centre National de la Recherche Scientifique for their financial support. We thank Fathia Djelti (INSERM U745) for providing the C57BL/6 mice brain tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Auzeil.

Additional information

Sophie Ayciriex and Anne Regazzetti contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 874 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayciriex, S., Regazzetti, A., Gaudin, M. et al. Development of a novel method for quantification of sterols and oxysterols by UPLC-ESI-HRMS: application to a neuroinflammation rat model. Anal Bioanal Chem 404, 3049–3059 (2012). https://doi.org/10.1007/s00216-012-6396-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6396-6

Keywords

Navigation