Skip to main content
Log in

Silicon photonic sensors incorporated in a digital microfluidic system

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Label-free biosensing with silicon nanophotonic microring resonator sensors has proven to be an excellent sensing technique for achieving high-throughput and high sensitivity, comparing favorably with other labeled and label-free sensing techniques. However, as in any biosensing platform, silicon nanophotonic microring resonator sensors require a fluidic component which allows the continuous delivery of the sample to the sensor surface. This component is typically based on microchannels in polydimethylsiloxane or other materials, which add cost and complexity to the system. The use of microdroplets in a digital microfluidic system, instead of continuous flows, is one of the recent trends in the field, where microliter- to picoliter-sized droplets are generated, transported, mixed, and split, thereby creating miniaturized reaction chambers which can be controlled individually in time and space. This avoids cross talk between samples or reagents and allows fluid plugs to be manipulated on reconfigurable paths, which cannot be achieved using the more established and more complex technology of microfluidic channels where droplets are controlled in series. It has great potential for high-throughput liquid handling, while avoiding on-chip cross-contamination. We present the integration of two miniaturized technologies: label-free silicon nanophotonic microring resonator sensors and digital microfluidics, providing an alternative to the typical microfluidic system based on microchannels. The performance of this combined system is demonstrated by performing proof-of-principle measurements of glucose, sodium chloride, and ethanol concentrations. These results show that multiplexed real-time detection and analysis, great flexibility, and portability make the combination of these technologies an ideal platform for easy and fast use in any laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xu DX, Vachon M, Densmore A (2010) Opt Lett 35(16):2771–2773

    Google Scholar 

  2. Selvaraja SK, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R (2009) J Light Technol 27:4076–4083

    Article  CAS  Google Scholar 

  3. Iqbal M, Gleeson MA, Spaugh B, Tybor F, Gunn WG, Hochberg M, Baehr-Jones T, Bailey RC, Gunn LC (2010) IEEE J Quantum Electron 16(3):654–661

    Article  CAS  Google Scholar 

  4. De Vos K, Girones Molera J, Claes T, De Koninck Y, Popelka S, Schacht E, Baets R, Bienstman P (2009) IEEE Photon J 1(4):225–235

    Article  Google Scholar 

  5. Claes T, Bogaerts W, Bienstman P (2011) Opt Lett 36(17):3320–3322

    Article  CAS  Google Scholar 

  6. Xu D-X, Densmore A, Delâge A, Waldron P, McKinnon R, Janz S, Lapointe J, Lopinski G, Mischki T, Post E, Cheben P, Schmid JH (2008) Opt Express 16:15137

    Article  CAS  Google Scholar 

  7. Wheeler AR (2008) Science 322:539

    Article  CAS  Google Scholar 

  8. Berge B (1993) C R Acad Sci II 317:157

    CAS  Google Scholar 

  9. Pollack PMG, Shendorov A, Fair RB (2000) Appl Phys Lett 77:1725

    Article  CAS  Google Scholar 

  10. Fair RB (2007) Microfluid Nanofluid 3:245

    Article  CAS  Google Scholar 

  11. Abdelgawad M, Freire SL, Yang H, Wheeler AR (2008) Lab Chip 8:672

    Article  CAS  Google Scholar 

  12. Witters D, Vergauwe N, Vermeir S, Ceyssens F, Liekens S, Puers R, Lammertyn J (2011) Lab Chip 11:2790–2794

    Article  CAS  Google Scholar 

  13. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Lab Chip 8:519

    Article  CAS  Google Scholar 

  14. Srinivasan V, Pamula VK, Fair RB (2004) Lab Chip 4:310

    Article  CAS  Google Scholar 

  15. Vergauwe N, Witters D, Atalay Y, Verbruggen B, Vermeir S, Ceyssens F, Puers B, Lammertyn J (2011) Microfluid Nanofluid 11:25

    Article  CAS  Google Scholar 

  16. Vergauwe N, Witters D, Ceyssens F, Vermeir S, Verbruggen B, Puers B, Lammertyn J (2011) J Micromech Microeng 21:054026

    Article  Google Scholar 

  17. Witters D, Vergauwe N, Ameloot R, Vermeir S, De Vos D, Puers B, Sels B, Lammertyn J (2012) Adv Mater 24(10):1316–1320

    Article  CAS  Google Scholar 

  18. Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula VK (2008) Lab Chip 8:2091

    Article  CAS  Google Scholar 

  19. Lin L, Evans RD, Jokerst NM, Fair RB (2008) IEEE Sens J 8:628–635

    Article  Google Scholar 

  20. Malic L, Veres T, Tabrizian M (2008) Lab Chip 9:473–475

    Article  Google Scholar 

  21. Luan L, Evans RD, Schwinn DA, Fair RB, Jokerst NM (2008) Chip scale integration of optical microresonator sensors with digital microfluidics systems, IEEE Lasers Electro-Op Soc. pp 259–260

  22. Luan L, Royal MW, Evans R, Fair RB, Jokerst NM (2011) IEEE Sens J 12:1794–1800

    Article  Google Scholar 

  23. Liu H, Dharmatilleke S, Maurya DK, Tay AAO (2009) Microsyst Technol 16:449–460

    Article  Google Scholar 

  24. Lin Y-Y, Evans RD, Welch E, Hsu B-N, Madison AC, Fair RB (2010) Sens Actuator B 150:465–470

    Article  Google Scholar 

  25. Pollack MG, Shenderov AD, Fair RB (2002) Lab Chip 2:96–101

    Article  CAS  Google Scholar 

  26. Bogaerts W, Baets R, Dumon P, Wiaux V, Beckx S, Taillaert D, Luyssaert B, Van Campenhout J, Bienstman P, Van Thourhout D (2005) J Light Technol 23(1):401–412

    Article  CAS  Google Scholar 

  27. De Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R (2007) Opt Express 15(12):7610–7615

    Article  Google Scholar 

  28. Su H, Xu GH (2007) Sens Actuator B 126:579–582

    Article  Google Scholar 

  29. Belda R, Herraez JV, Diez O (2005) Phys Chem Liq 43(1):91–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by the Flemish Fund for Scientific Research (FWO Vlaanderen) under project number 3G099711. The authors would like to acknowledge EFRO Interreg NanosensEU for its financial support, ePIXfab (http://www.epixfab.eu) for the fabrication of the optical chip, and Katrien De Vos and Tom Claes for designing the sensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Lerma Arce.

Additional information

Published in the special paper collection Optical Biochemical and Chemical Sensors with guest editor Laura M. Lechuga.

Cristina Lerma Arce and Daan Witters contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

This video shows the movement of water droplets a digital microfluidic platform. Droplets were sandwiched between the two plates. To activate the electrowetting-on-dielectric mechanism the DC actuation voltage, activation time, and relaxation time were controlled by means of homemade programs in MATLAB and LabView. When voltage is applied to the system, a tension gradient in the droplet surface is evoked which attracts the droplet towards the activated region. Thus the droplet movement can be freely controlled along a pattern of electrodes (MPG 818 kb)

The measurements were performed as follows: the droplet of DI-water was transported in the digital microfluidic platform to the sensors area, our system started measuring. Subsequently, that droplet of water was moved, leaving a free route for the second droplet with a certain sodium chloride concentration, which is measured once it reaches the sensors. This process is repeated measuring again the water droplet and finally a third droplet with a different sodium chloride concentration. (MPG 2.29 MB)

ESM 3

(PDF 18.1 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerma Arce, C., Witters, D., Puers, R. et al. Silicon photonic sensors incorporated in a digital microfluidic system. Anal Bioanal Chem 404, 2887–2894 (2012). https://doi.org/10.1007/s00216-012-6319-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6319-6

Keywords

Navigation