Skip to main content
Log in

New monolithic stir-cake-sorptive extraction for the determination of polar phenols by HPLC

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel porous monolith has been prepared and used as a sorbent in stir-cake-sorptive extraction (SCSE). The monolithic material was prepared by in-situ copolymerization of allyl thiourea (AT) and divinylbenzene (DB) in the presence of dimethylformamide as a porogen solvent. To optimize the polymerization conditions, different monoliths with different ratios of functional monomer to porogenic solvent were prepared, and their extraction efficiency was investigated in detail. The monolith was characterized by elemental analysis, scanning electron microscopy, mercury intrusion porosimetry, and infrared spectroscopy. Analysis of polar phenols in environmental water samples by a combination of ATDB-SCSE and HPLC with diode-array detection was selected as a model for the practical application of the new sorbent. Several extraction conditions, including extraction and desorption time, pH, and ionic strength of the sample matrix were optimized. The results showed that the new monolith had high affinity for polar phenols and could be used to extract them effectively. Under the optimum conditions, low detection (S/N = 3) and quantification (S/N = 10) limits were achieved for the phenols, within the ranges 0.18–0.90 and 0.59–2.97 μg L−1, respectively. The linearity of the method was good, and the method enabled simple, practical, and low-cost extraction of these analytes. The distribution coefficients between ATDB and water (K ATDB/W) were calculated for the phenolic compounds and compared with K O/W. Finally, the proposed method was successfully applied to the determination of the compounds in three environmental water samples, with acceptable recovery and satisfactory repeatability.

HPLC chromatograms of real water sample treated with ATDB-SCSE (a) and spiked water sample treated with ATDB-SCSE (b)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hjerten S, Liao JL, Zhang R (1989) J Chromatogr 473:273–278

    Article  CAS  Google Scholar 

  2. Svec F (2012) J Chromatogr A 1228:250–262

    Article  CAS  Google Scholar 

  3. Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N (2006) Anal Chem 78:7632–7642

    Article  CAS  Google Scholar 

  4. Lin H, Ou JJ, Zhang ZB, Dong J, Wu MH, Zou HF (2012) Anal Chem 84:2721–2728

    Article  CAS  Google Scholar 

  5. Hoth DC, Rivera JG, Colon LA (2005) J Chromatogr A 1079:1–2

    Article  Google Scholar 

  6. Yang GL, Yan CH, Bai LG, Li J, Duan YH (2012) Anal Meth 4:1098–1104

    Article  CAS  Google Scholar 

  7. Brice RW, Zhang X, Colon LA (2009) J Sep Sci 32:15–16

    Article  Google Scholar 

  8. Huang XJ, Wang QQ, Yan H, Huang Y, Huang BL (2005) J Chromatogr A 1062:183–188

    Article  CAS  Google Scholar 

  9. Lei W, Zhang LY, Wan L, Shi BF, Wang YQ, Zhang WB (2012) J Chromatogr A 1239:64–71

    Article  CAS  Google Scholar 

  10. Liang Y, Zhu GJ, Wang TT, Zhang XD, Liang Z, Zhang LH, Zhang YK (2011) Electrophoresis 32:2911–2914

    Article  CAS  Google Scholar 

  11. Nema T, Chan ECY, Ho PC (2010) Talanta 82:488–494

    Article  CAS  Google Scholar 

  12. Bravo JC, Garcinuño RM, Fernández P, Durand JS (2007) Anal Bioanal Chem 388:1039–1045

    Article  CAS  Google Scholar 

  13. Zheng MM, Ruan GD, Feng YQ (2010) J Chromatogr A 1216:7510–7519

    Google Scholar 

  14. Thabano JRE, Breadmore MC, Hutchinson JP, Johns C, Haddad PR (2007) J Chromatogr A 1175:117–126

    Article  CAS  Google Scholar 

  15. Qiu LJ, Liu W, Huang M, Zhang L (2010) J Chromatogr A 1217:7461–7470

    Article  CAS  Google Scholar 

  16. Huang XJ, Qiu NN, Yuan DX (2008) J Chromatogr A 1194:134–138

    Article  CAS  Google Scholar 

  17. Bratkowska D, Marcé RM, Cormack PAG, Borrull F, Fontanals N (2011) Anal Chim Acta 706:135–142

    Article  CAS  Google Scholar 

  18. Liu YB, Ma Q, Feng YQ (2010) J Chromatogr A 1217:3583–3589

    Article  Google Scholar 

  19. Huang XJ, Chen LL, Lin FH, Yuan DX (2011) J Sep Sci 34:2145–2151

    CAS  Google Scholar 

  20. Huang XJ, Yuan DX (2007) J Chromatogr A 1154:152–157

    Article  CAS  Google Scholar 

  21. Huang XJ, Qiu NN, Yuan DX, Lin QM (2010) J Chromatogr A 1217:2667–2673

    Article  CAS  Google Scholar 

  22. Huang XJ, Yuan DX, Huang BL (2008) Talanta 75:172–177

    CAS  Google Scholar 

  23. Huang XJ, Lin JB, Yuan DX (2010) J Chromatogr A 1217:4898–4903

    Article  CAS  Google Scholar 

  24. Kawaguchi M, Ishii Y, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H (2005) Anal Chim Acta 533:57–65

    Article  CAS  Google Scholar 

  25. Kawaguchi M, Inoue K, Yoshimura M, Sakui N, Okanouchi N, Ito R, Yoshimura Y, Nakazawa H (2004) J Chromatogr A 1041:19–27

    Article  CAS  Google Scholar 

  26. Jeannot R, Sabik H, Sauvard E, Dagnac T, Dohrendorf K (2002) J Chromatogr A 974:143–159

    Article  CAS  Google Scholar 

  27. Braun P, Moeder M, Schrade S, Popp P, Kuschk P, Engewald W (2003) J Chromatogr A 988:41–51

    Article  CAS  Google Scholar 

  28. Sirvent G, Hidalgo M, Salvad V (2004) J Sep Sci 27:613–618

    Article  CAS  Google Scholar 

  29. Huang XJ, Qiu NN, Yuan DX (2009) J Sep Sci 32:1407–1414

    Article  Google Scholar 

  30. Poole SK, Poole CF (1995) Analyst 120:1733–1738

    Article  CAS  Google Scholar 

  31. Lord H, Pawliszyn J (2000) J Chromatogr A 902:17–63

    Article  CAS  Google Scholar 

  32. Cladera A, Miró M, Estela JM, Cerdà V (2000) Anal Chim Acta 421:155–166

    Article  CAS  Google Scholar 

  33. Wu YL, Hu B, Hou YL (2008) J Sep Sci 31:3772–3781

    Article  CAS  Google Scholar 

  34. Simoes NG, Cardoso VV, Ferreira E, Benoliel MJ, Almeida CMM (2007) Chemosphere 68:501–510

    Article  CAS  Google Scholar 

  35. Helaleh MIH, Takabayashi FS, Korenag T (2001) Anal Chim Acta 428:227–234

    Article  CAS  Google Scholar 

  36. Schilling R, Clarkson PJ, Cooke M (1998) Fresenius J Anal Chem 360:90–94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr XJ Huang is grateful for support from the National Natural Science Foundation of China (grant 21077085), the Scientific Research Foundation for Returned Overseas Chinese Scholars, the State Education Ministry, the New Century Excellent Talents in Fujian Province University, and Fundamental Research Funds for Central Universities (no. CXB2011037). Dr XJ Li is grateful for support from the Fujian Provincial Key Program of Science and Technology (no. 2011Y0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojia Huang.

Additional information

Published in the topical collection Monolithic Columns in Liquid Phase Separations with guest editor Luis A. Colon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Wang, Y., Yuan, D. et al. New monolithic stir-cake-sorptive extraction for the determination of polar phenols by HPLC. Anal Bioanal Chem 405, 2185–2193 (2013). https://doi.org/10.1007/s00216-012-6301-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6301-3

Keywords

Navigation