Skip to main content
Log in

Rapid analysis of NSAIDs binding to β-cyclodextrin using the simultaneous measurement of absorption and circular dichroism with a novel multi-cell low-volume device

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

One of the relatively recent and most widely used approaches to reduce side effects associated with the use of nonsteroidal anti-inflammatory drugs (NSAIDs) is the complexation of NSAIDs with Cyclodextrins (CyD). So far, CyD interaction with drugs is not well understood. There have been many reports along these lines; however, rarely do these studies exploit the full potential of optical techniques. The purpose of this work is to produce a versatile, compact, low-volume, routine apparatus for the simultaneous measurements of absorbance and circular dichroism (CD) which allows for the concurrent use of three different pathlengths for binding studies of NSAIDs/CyD as a function of pH. A new rotating multi-cell holder which holds four cells was designed and manufactured. The work was achieved using an effective novel method for binding titration employing four separate flow cells connected in series in a flow system involving a titration flask and a pump. The pK a, binding constants, stoichiometry and structural co-conformations of NSAIDs/β-CyD complexes were elucidated and determined with accuracy. The system proved to be efficient and the analysis time was reduced to less than or equal to one fourth of total analysis time used in one-cell systems, with possible automation for high-throughput analysis.

A multi-cell low volume device for pH and binding studies using UV and CD measurements

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moodley I (2008) Cardiovasc J Afr 19:102–107

    CAS  Google Scholar 

  2. Filippa M, Sancho MI, Gasull E (2008) J Pharm Biomed Anal 48:969–973

    Article  CAS  Google Scholar 

  3. Abdel-Tawab M, Zettl H, Schubert-Zsilavecz M (2009) Curr Med Chem 16:2042–2063

    Article  CAS  Google Scholar 

  4. Duran N, Justo GZ, Melo PS, De Azevedo MB, Brito AR, Almeida AB, Haun M (2003) Can J Physiol Pharmacol 81:387–396

    Article  CAS  Google Scholar 

  5. Geczy J, Bruhwyler J, Scuvee-Moreau J, Seutin V, Masset H, Van Heugen JC, Dresse A, Lejeune C, Decamp E, Szente L, Szejtli J, Liegeois JF (2000) Psychopharmacology (Berl) 151:328–334

    Article  CAS  Google Scholar 

  6. Yujuan C, Runhua L (2009) Spectrochim Acta A Mol Biomol Spectrosc 73:713–718

    Article  Google Scholar 

  7. Nievergelt Y (1994) Analyst 119:145–151

    Article  CAS  Google Scholar 

  8. Fuchs H, Gessner R (2001) Biochem J 359:411–418

    Article  CAS  Google Scholar 

  9. Sadlej-Sosnowska N, Gasinski L, Oziminski WP (2003) Pol J Chem 77:1039–1048

    CAS  Google Scholar 

  10. Connors KA (1987) Optical absorption spectroscopy. Binding constants, the measurement of molecular complex stability. Wiley, New York

    Google Scholar 

  11. Tran CD, Baptista MS, Tomooka T (1998) Langmuir 14:6886–6892

    Article  CAS  Google Scholar 

  12. Ikeda Y, Hirayama F, Arima H, Uekama K, Yoshitake Y, Harano K (2004) J Pharm Sci 93:1659–1671

    Article  CAS  Google Scholar 

  13. Junquera E, Martin-Pastor M, Aicart E (1998) J Org Chem 63:4349–4358

    Article  CAS  Google Scholar 

  14. Mura P, Furlanetto S, Cirri M, Maestrelli F, Corti G, Pinzauti S (2005) J Pharm Biomed Anal 37:987–994

    Article  CAS  Google Scholar 

  15. Ascoli GA, Domenici E, Bertucci C (2006) Chirality 18:667–679

    Article  CAS  Google Scholar 

  16. McConnell O, He Y, Nogle L, Sarkahian A (2007) Chirality 19:716–730

    Article  CAS  Google Scholar 

  17. Frelek J, Kowalska P, Masnyk M, Kazimierski A, Korda A, Woznica M, Chmielewski M, Furche F (2007) Chemistry 13:6732–6744

    Article  CAS  Google Scholar 

  18. Platt JR (1949) J Chem Phys 17:484–495

    Article  CAS  Google Scholar 

  19. Drake AF (2001) Circular dichroism. Protein–ligand interaction: structure and spectroscopy practical approach. Oxford University Press, Oxford, pp 123–167

    Google Scholar 

  20. Aboel Dahab A, El-Hag D, Drake AF (2010) Anal Methods 2:929–935

    Article  Google Scholar 

  21. Mahler HC, Muller R, Friess W, Delille A, Matheus S (2005) Eur J Pharm Biopharm 59:407–417

    Article  CAS  Google Scholar 

  22. Rai SK, Sharma M, Tiwari M (2008) Bioorg Med Chem 16:7302–7310

    Article  CAS  Google Scholar 

  23. Domanska U, Pobudkowska A, Pelczarska A, Gierycz P (2009) J Phys Chem B 113:8941–8947

    Article  CAS  Google Scholar 

  24. Steed JW, Atwood JL (2009) Supramolecular chemistry, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  25. Harata K (1981) Bioorg Chem 10:255–265

    Article  CAS  Google Scholar 

  26. Martin-Davis D, Savage JR (1994) J Chem Soc Perkin Trans 2:1525–1530

    Google Scholar 

  27. Xing S, Zhang Q, Zhang C, Zhao Q, Ai H, Sun D (2009) J Solut Chem 38:531–543

    Article  CAS  Google Scholar 

  28. Williams RO 3rd, Liu J (1999) Eur J Pharm Biopharm 47:145–152

    Article  CAS  Google Scholar 

  29. Blondino FE, Byron PR (1995) J Pharm Biomed Anal 13:111–119

    Article  CAS  Google Scholar 

  30. Bakirci H, Zhang X, Nau WM (2005) J Org Chem 70:39–46

    Article  CAS  Google Scholar 

  31. Junquera E, Ruiz D, Aicart E (1999) J Colloid Interface Sci 216:154–160

    Article  CAS  Google Scholar 

  32. Gravestock T, Box K, Comer J, Frake E, Judge S, Ruiz R (2011) Anal Methods 3:560–567

    Article  CAS  Google Scholar 

  33. Ibanez GA, Labadie G, Escandar GM, Olivieri AC (2003) J Mol Struct 645:61–68

    Article  CAS  Google Scholar 

  34. Smith MB, March J (2007) Advanced organic chemistry, reactions, mechanisms and structure, 7th edn. Wiley, New York

    Google Scholar 

  35. Junquera E, Pena L, Aicart E (1998) J Pharm Sci 87:86–90

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank molecular biophysics group at King’s College London and Applied Photo Physics (APL) Ltd. for their support.

Conflict of interests

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Aboel Dahab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aboel Dahab, A., El-Hag, D. Rapid analysis of NSAIDs binding to β-cyclodextrin using the simultaneous measurement of absorption and circular dichroism with a novel multi-cell low-volume device. Anal Bioanal Chem 404, 1839–1850 (2012). https://doi.org/10.1007/s00216-012-6286-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6286-y

Keywords

Navigation