Skip to main content
Log in

Rational design of core–shell molecularly imprinted polymer based on computational simulation and Doehlert experimental optimization: application to the separation of tanshinone IIA from Salvia miltiorrhiza Bunge

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Computational simulation and Doehlert experimental optimization were done for the rational design of a core–shell molecularly imprinted polymer (CS-MIP) for use in the highly selective separation of Tanshinone IIA (TSIIA) from the crude extracts of Salvia miltiorrhiza Bunge (SMB). The functional monomer layer of the polymer shells directed the selective occurrence of imprinting polymerization at the surface of silica through the copolymerization of vinyl end groups with functional monomers and also drove TSIIA templates into the formed polymer shells through the charge–transfer complex interactions between TSIIA and the functional monomer layer. As a result, the maximum rebinding capacity was achieved with the use of optimal grafting ratio by the Doehlert design. The CS-MIP exhibited high recognition selectivity and binding affinity to TSIIA. When the imprinted particles were used as dispersive solid phase extraction sorbents, the recovery yield of TSIIA reached 93 % by a one-step extraction from the crude extracts of SMB, and the purity of TSIIA was larger than 98 % by HPLC analysis. These results show the possibility of a highly selective separation and enrichment of TSIIA from the SMB using the TSIIA-imprinted core–shell molecularly imprinted polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang XH, Morris-Natschke SL, Lee KH (2007) Med Res Rev 27:133–148

    Article  Google Scholar 

  2. Cheng TO (2007) Int J Cardiol 121:9–22

    Article  Google Scholar 

  3. Zhou LM, Zuo Z, Chow MSS (2005) J Clin Pharmacol 45:1345–1359

    Article  CAS  Google Scholar 

  4. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) J Mol Recognit 19:106–180

    Article  CAS  Google Scholar 

  5. Guan GJ, Liu BH, Wang ZY, Zhang ZP (2008) Sensors 8:8291–8320

    Article  CAS  Google Scholar 

  6. Xie C, Zhang Z, Wang D, Guan G, Gao D, Liu J (2006) Anal Chem 78:8339–8346

    Article  CAS  Google Scholar 

  7. Tokonami S, Shiigi H, Nagaoka T (2009) Anal Chim Acta 641:7–13

    Article  CAS  Google Scholar 

  8. Hillberg AL, Tabrizian M (2008) IRBM 29:89–104

    Article  Google Scholar 

  9. Nicholls IA, Andersson HS, Charlton C, Henschel H, Karlsson BCG, Karlsson JG, O’Mahony J, Rosengren AM, Rosengren KJ, Wikman S (2009) Biosens Bioelectron 25:543–552

    Article  CAS  Google Scholar 

  10. Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA (2005) Adv Drug Deliv Rev 57:1795–1808

    Article  CAS  Google Scholar 

  11. Azenha M, Kathirvel P, Nogueira P, Fernando-Silva A (2008) Biosens Bioelectron 23:1843–1849

    Article  CAS  Google Scholar 

  12. Diñeiro Y, Menéndez MI, Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2006) Biosens Bioelectron 22:364–371

    Article  Google Scholar 

  13. Dineiro Y, Menendez MI, Blanco-Lopez MC, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2005) Anal Chem 77:6741–6746

    Article  CAS  Google Scholar 

  14. Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner APF (2002) Anal Chem 74:1288–1293

    Article  CAS  Google Scholar 

  15. Batra D, Shea KJ (2003) Curr Opin Chem Biol 7:434–442

    Article  CAS  Google Scholar 

  16. Dirion B, Cobb Z, Schillinger E, Andersson LI, Sellergren B (2003) J Am Chem Soc 125:15101–15109

    Article  CAS  Google Scholar 

  17. Baggiani C, Anfossi L, Giovannoli C, Tozzi C (2004) J Chromatogr B 804:31–41

    Article  CAS  Google Scholar 

  18. Navarro-Villoslada F, Vicente BS, Moreno-Bondi MC (2004) Anal Chim Acta 504:149–162

    Article  CAS  Google Scholar 

  19. Rosengren AM, Karlsson JG, Andersson PO, Nicholl IA (2005) Anal Chem 77:5700–5705

    Article  CAS  Google Scholar 

  20. Tarley CRT, Silveira G, dos Santos WNL, Matos GD, da Silva EGP, Bezerra MA, Mir M, Ferreira SLC (2009) Microchem J 92:58–67

    Article  CAS  Google Scholar 

  21. Ferreira SLC, dos Santos WNT, Quintella CM, Neto BB, Bosque-Sendra JM (2004) Talanta 63:1061–1067

    Article  CAS  Google Scholar 

  22. Rossi C, Haupt K (2007) Anal Bioanal Chem 389:455–460

    Article  CAS  Google Scholar 

  23. Giannini I, Orlandini S, Gotti R, Pinzauti S, Furlanetto S (2009) Talanta 80:781–788

    Article  CAS  Google Scholar 

  24. Fuentes E, Báez ME, Díaz J (2009) J Chromatogr A 1216:8859–8866

    Article  CAS  Google Scholar 

  25. Bonfilio R, Tarley CR, Pereira GR, Salgado HR, de Araujo MB (2009) Talanta 80:236–241

    Article  CAS  Google Scholar 

  26. Lopes Wda L, Santelli RE, Oliveira EP, de Carvalho Mde F, Bezerra MA (2009) Talanta 79:1276–1282

    Article  Google Scholar 

  27. DiCicco MP, Lang B, Harper TI (2009) Biomed Chromatogr 23:647–657

    Article  CAS  Google Scholar 

  28. Kochkar H, Lakhdhar N, Berhault G, Bausach M, Ghorbel A (2009) J Phys Chem 113:1672–1679

    CAS  Google Scholar 

  29. Valle PWPA, Rezende TsF, Souza RnA, Fortes ICP, Pasa VnMD (2009) Energy Fuel 23:5219–5227

    Article  CAS  Google Scholar 

  30. Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, Fang X (2009) Int J Pharm 376:176–185

    Article  CAS  Google Scholar 

  31. Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2006) J Pharm Sci 95:1994–2013

    Article  CAS  Google Scholar 

  32. Gabriels M, Plaizier-Vercammen J (2004) Int J Pharm 283:19–34

    Article  CAS  Google Scholar 

  33. Sanchez-Lafuente C, Furlanetto S, Fernandez-Arevalo M, Alvarez-Fuentes J, Rabasco AM, Faucci MT, Pinzauti S, Mura P (2002) Int J Pharm 237:107–118

    Article  CAS  Google Scholar 

  34. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  35. Gao DM, Zhang ZP, Wu M, Xie C, Guan G, Wang D (2007) J Am Chem Soc 129:7859–7866

    Article  CAS  Google Scholar 

  36. Koohpaei AR, Shahtaheri SJ, Ganjali MR, Forushani AR, Golbabaei F (2008) Talanta 75:978–986

    Article  CAS  Google Scholar 

  37. Pizarro C, Pérez-del-Notario N, González-Sáiz JM (2007) J Chromatogr A 1143:26–35

    Article  CAS  Google Scholar 

  38. Ferreira SLC, Bruns RE, da Silva EGP, dos Santos WNT, Quintella CM, David JM, de Andrade JB, Breitkreitz MC, Jardim ICSF, Neto BB (2007) J Chromatogr A 1158:2–14

    Article  CAS  Google Scholar 

  39. Karlsson BCG, Mahony JO, Karlsson JG, Bengtsson H, Eriksson LA, Nicholls IA (2009) J Am Chem Soc 131:13297–13304

    Article  CAS  Google Scholar 

  40. Jiang N, Ma J, Jiang YS (2006) J Chem Phys 124:1–9

    Google Scholar 

  41. Jiang N, Ma J (2008) J Phys Chem A 112:9854–9867

    Article  CAS  Google Scholar 

  42. Jiang N, Ma J (2009) Phys Chem Chem Phys 11:5100–5109

    Article  CAS  Google Scholar 

  43. Jiang N, Ma J (2010) J Phys Chem B 114:11241–11250

    Article  CAS  Google Scholar 

  44. Yao JH, Li X, Qin W (2008) Anal Chim Acta 610:282–288

    Article  CAS  Google Scholar 

  45. Chang LM, Li Y, Chu J, Qi JY, Li X (2010) Anal Chim Acta 680:65–71

    Article  CAS  Google Scholar 

  46. Rampey AM, Umpleby RJ, Rushton GT, Iseman JC, Shah RN, Shimizu KD (2004) Anal Chem 76:1123–1133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (nos. 30801558, 81173538, 20875048, 21075066), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (no. 08KJB360002), the National Science Foundation for Post-doctoral Scientists of China (no. 20090451237), and Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, X., Li, H., Luo, J. et al. Rational design of core–shell molecularly imprinted polymer based on computational simulation and Doehlert experimental optimization: application to the separation of tanshinone IIA from Salvia miltiorrhiza Bunge. Anal Bioanal Chem 403, 2691–2703 (2012). https://doi.org/10.1007/s00216-012-6078-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6078-4

Keywords

Navigation