Skip to main content

Advertisement

Log in

Advancing formaldehyde cross-linking towards quantitative proteomic applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Formaldehyde is a key fixation reagent. This review explores its application in combination with qualitative and quantitative mass spectrometry (MS). Formalin-fixed and paraffin-embedded (FFPE) tissues form a large reservoir of biologically valuable samples and their investigation by MS has only recently started. Furthermore, formaldehyde can be used to stabilise protein–protein interactions in living cells. Because formaldehyde is able to modify proteins, performing MS analysis on these samples can pose a challenge. Here we discuss the chemistry of formaldehyde cross-linking, describe the problems of and progress in these two applications and their common aspects, and evaluate the potential of these methods for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fox CH, Johnson FB, Whiting J, Roller PP (1985) Formaldehyde fixation. J Histochem Cytochem 33(8):845–853

    Article  CAS  Google Scholar 

  2. Ralton LD, Murray GI (2011) The use of formalin fixed wax embedded tissue for proteomic analysis. J Clin Pathol 64(4):297–302

    Article  CAS  Google Scholar 

  3. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein–DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947

    Article  CAS  Google Scholar 

  4. Walsh GM, Rogalski JC, Klockenbusch C, Kast J (2010) Mass spectrometry-based proteomics in biomedical research: emerging technologies and future strategies. Expert Rev Mol Med 12:e30

    Article  Google Scholar 

  5. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031

    Article  CAS  Google Scholar 

  6. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  Google Scholar 

  7. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  CAS  Google Scholar 

  8. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  Google Scholar 

  9. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11(4):535–553

    Article  CAS  Google Scholar 

  10. Sutherland BW, Toews J, Kast J (2008) Utility of formaldehyde cross-linking and mass spectrometry in the study of protein–protein interactions. J Mass Spectrom 43(6):699–715

    Article  CAS  Google Scholar 

  11. Metz B, Kersten GF, Baart GJ, de Jong A, Meiring H, ten Hove J, van Steenbergen MJ, Hennink WE, Crommelin DJ, Jiskoot W (2006) Identification of formaldehyde-induced modifications in proteins: reactions with insulin. Bioconj Chem 17(3):815–822

    Article  CAS  Google Scholar 

  12. Metz B, Kersten GF, Hoogerhout P, Brugghe HF, Timmermans HA, de Jong A, Meiring H, ten Hove J, Hennink WE, Crommelin DJ, Jiskoot W (2004) Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 279(8):6235–6243

    Article  CAS  Google Scholar 

  13. Toews J, Rogalski JC, Clark TJ, Kast J (2008) Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. Anal Chim Acta 618(2):168–183

    Article  CAS  Google Scholar 

  14. Toews J, Rogalski JC, Kast J (2010) Accessibility governs the relative reactivity of basic residues in formaldehyde-induced protein modifications. Anal Chim Acta 676(1–2):60–67

    Article  CAS  Google Scholar 

  15. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494

    Article  CAS  Google Scholar 

  16. Ostasiewicz P, Zielinska DF, Mann M, Wisniewski JR (2010) Proteome, phosphoproteome, and N-glycoproteome are quantitatively preserved in formalin-fixed paraffin-embedded tissue and analyzable by high-resolution mass spectrometry. J Proteome Res 9(7):3688–3700

    Article  CAS  Google Scholar 

  17. O’Leary TJ, Fowler CB, Evers DL, Mason JT (2009) Protein fixation and antigen retrieval: chemical studies. Biotech Histochem 84(5):217–221

    Google Scholar 

  18. Shevchenko A, Wilm M, Vorm O, Jensen ON, Podtelejnikov AV, Neubauer G, Mortensen P, Mann M (1996) A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochem Soc Trans 24(3):893–896

    CAS  Google Scholar 

  19. Namimatsu S, Ghazizadeh M, Sugisaki Y (2005) Reversing the effects of formalin fixation with citraconic anhydride and heat: a universal antigen retrieval method. J Histochem Cytochem 53(1):3–11

    CAS  Google Scholar 

  20. Chaurand P, Schwartz SA, Billheimer D, Xu BJ, Crecelius A, Caprioli RM (2004) Integrating histology and imaging mass spectrometry. Anal Chem 76(4):1145–1155

    Article  CAS  Google Scholar 

  21. Dongre AR, Eng JK, Yates JR 3rd (1997) Emerging tandem-mass-spectrometry techniques for the rapid identification of proteins. Trends Biotechnol 15(10):418–425

    Article  CAS  Google Scholar 

  22. DeSouza LV, Krakovska O, Darfler MM, Krizman DB, Romaschin AD, Colgan TJ, Siu KW (2010) mTRAQ-based quantification of potential endometrial carcinoma biomarkers from archived formalin-fixed paraffin-embedded tissues. Proteomics 10(17):3108–3116

    Article  CAS  Google Scholar 

  23. Heaton KJ, Master SR (2011) Peptide extraction from formalin-fixed paraffin-embedded tissue. Curr Protoc Protein Sci Chapter 23:Unit23 25

    Google Scholar 

  24. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362

    Article  CAS  Google Scholar 

  25. Becker KF, Schott C, Hipp S, Metzger V, Porschewski P, Beck R, Nahrig J, Becker I, Hofler H (2007) Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J Pathol 211(3):370–378

    Article  CAS  Google Scholar 

  26. Nirmalan NJ, Hughes C, Peng J, McKenna T, Langridge J, Cairns DA, Harnden P, Selby PJ, Banks RE (2011) Initial development and validation of a novel extraction method for quantitative mining of the formalin-fixed, paraffin-embedded tissue proteome for biomarker investigations. J Proteome Res 10(2):896–906

    Article  CAS  Google Scholar 

  27. Prieto DA, Hood BL, Darfler MM, Guiel TG, Lucas DA, Conrads TP, Veenstra TD, Krizman DB (2005) Liquid Tissue: proteomic profiling of formalin-fixed tissues. Biotechniques Suppl:32–35

  28. Jain MR, Liu T, Hu J, Darfler M, Fitzhugh V, Rinaggio J, Li H (2008) Quantitative proteomic analysis of formalin fixed paraffin embedded oral HPV lesions from HIV patients. Open Proteomics J 1:40–45

    Article  CAS  Google Scholar 

  29. Xiao Z, Li G, Chen Y, Li M, Peng F, Li C, Li F, Yu Y, Ouyang Y, Chen Z (2010) Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. J Histochem Cytochem 58(6):517–527

    Article  CAS  Google Scholar 

  30. Bateman NW, Sun M, Bhargava R, Hood BL, Darfler MM, Kovatich AJ, Hooke JA, Krizman DB, Conrads TP (2011) Differential proteomic analysis of late-stage and recurrent breast cancer from formalin-fixed paraffin-embedded tissues. J Proteome Res 10(3):1323–1332

    Article  CAS  Google Scholar 

  31. Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45(1):87–100

    Article  CAS  Google Scholar 

  32. Kim BC, Park JH, Gu MB (2005) Multiple and simultaneous detection of specific bacteria in enriched bacterial communities using a DNA microarray chip with randomly generated genomic DNA probes. Anal Chem 77(8):2311–2317

    Article  CAS  Google Scholar 

  33. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297

    Article  CAS  Google Scholar 

  34. Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5(9):829–834

    Article  CAS  Google Scholar 

  35. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316(5830):1497–1502

    Article  CAS  Google Scholar 

  36. Markham K, Bai Y, Schmitt-Ulms G (2007) Co-immunoprecipitations revisited: an update on experimental concepts and their implementation for sensitive interactome investigations of endogenous proteins. Anal Bioanal Chem 389(2):461–473

    Article  CAS  Google Scholar 

  37. Sinz A (2010) Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal Bioanal Chem 397(8):3433–3440

    Article  CAS  Google Scholar 

  38. Lomant AJ, Fairbanks G (1976) Chemical probes of extended biological structures: synthesis and properties of the cleavable protein cross-linking reagent [35S]dithiobis(succinimidyl propionate). J Mol Biol 104(1):243–261

    Article  CAS  Google Scholar 

  39. Vasilescu J, Guo X, Kast J (2004) Identification of protein–protein interactions using in vivo cross-linking and mass spectrometry. Proteomics 4(12):3845–3854

    Article  CAS  Google Scholar 

  40. Klockenbusch C, Kast J (2010) Optimization of formaldehyde cross-linking for protein interaction analysis of non-tagged integrin beta1. J Biomed Biotechnol 2010:927585

    Article  Google Scholar 

  41. Watts JC, Huo H, Bai Y, Ehsani S, Jeon AH, Shi T, Daude N, Lau A, Young R, Xu L, Carlson GA, Williams D, Westaway D, Schmitt-Ulms G (2009) Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. PLoS Pathog 5(10):e1000608

    Article  Google Scholar 

  42. Jeon AH, Schmitt-Ulms G (2012) Time-controlled transcardiac perfusion crosslinking for in vivo interactome studies. Methods Mol Biol 803:231–246

    Article  Google Scholar 

  43. Nittis T, Guittat L, LeDuc RD, Dao B, Duxin JP, Rohrs H, Townsend RR, Stewart SA (2010) Revealing novel telomere proteins using in vivo cross-linking, tandem affinity purification, and label–free quantitative LC–FTICR–MS. Mol Cell Proteomics 9(6):1144–1156

    Article  CAS  Google Scholar 

  44. Tackett AJ, DeGrasse JA, Sekedat MD, Oeffinger M, Rout MP, Chait BT (2005) I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J Proteome Res 4(5):1752–1756

    Article  CAS  Google Scholar 

  45. Guerrero C, Tagwerker C, Kaiser P, Huang L (2006) An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26S proteasome-interacting network. Mol Cell Proteomics 5(2):366–378

    CAS  Google Scholar 

  46. Higgs PI, Myers PS, Postle K (1998) Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers. J Bacteriol 180(22):6031–6038

    CAS  Google Scholar 

  47. Skare JT, Ahmer BM, Seachord CL, Darveau RP, Postle K (1993) Energy transduction between membranes. TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. J Biol Chem 268(22):16302–16308

    CAS  Google Scholar 

  48. Larsen RA, Foster-Hartnett D, McIntosh MA, Postle K (1997) Regions of Escherichia coli TonB and FepA proteins essential for in vivo physical interactions. J Bacteriol 179(10):3213–3221

    CAS  Google Scholar 

  49. Layh-Schmitt G, Podtelejnikov A, Mann M (2000) Proteins complexed to the P1 adhesin of Mycoplasma pneumoniae. Microbiology 146(Pt 3):741–747

    CAS  Google Scholar 

  50. Knobbe CB, Revett TJ, Bai Y, Chow V, Jeon AH, Bohm C, Ehsani S, Kislinger T, Mount HT, Mak TW, St George-Hyslop P, Schmitt-Ulms G (2011) Choice of biological source material supersedes oxidative stress in its influence on DJ-1 in vivo interactions with Hsp90. J Proteome Res 10(10):4388–4404

    Article  CAS  Google Scholar 

  51. Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, Kim TW (2010) Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J 24(8):2783–2794

    Article  CAS  Google Scholar 

  52. Bousquet-Dubouch MP, Baudelet E, Guerin F, Matondo M, Uttenweiler-Joseph S, Burlet-Schiltz O, Monsarrat B (2009) Affinity purification strategy to capture human endogenous proteasome complexes diversity and to identify proteasome-interacting proteins. Mol Cell Proteomics 8(5):1150–1164

    Article  CAS  Google Scholar 

  53. Mayne SL, Patterton HG (2011) Bioinformatics tools for the structural elucidation of multi-subunit protein complexes by mass spectrometric analysis of protein–protein cross-links. Brief Bioinform 12(6):660–671

    Article  CAS  Google Scholar 

  54. Panchaud A, Singh P, Shaffer SA, Goodlett DR (2010) xComb: a cross-linked peptide database approach to protein–protein interaction analysis. J Proteome Res 9(5):2508–2515

    Article  CAS  Google Scholar 

  55. Du X, Chowdhury SM, Manes NP, Wu S, Mayer MU, Adkins JN, Anderson GA, Smith RD (2011) Xlink-identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry. J Proteome Res 10(3):923–931

    Article  CAS  Google Scholar 

  56. Bandeira N (2011) Protein identification by spectral networks analysis. Methods Mol Biol 694:151–168

    Article  CAS  Google Scholar 

  57. Shi T, Liu J, Yan C, Wang X (2011) Isocratic method for affinity enrichment of covalently-linked peptides in cyanogen bromide cleavage of proteins. Proteomics

  58. Fritzsche R, Ihling CH, Gotze M, Sinz A (2012) Optimizing the enrichment of cross-linked products for mass spectrometric protein analysis. Rapid Commun Mass Spectrom 26(6):653–658

    Article  CAS  Google Scholar 

  59. Lauber MA, Reilly JP (2011) Structural analysis of a prokaryotic ribosome using a novel amidinating cross-linker and mass spectrometry. J Proteome Res 10(8):3604–3616

    Article  CAS  Google Scholar 

  60. Leitner A, Reischl R, Walzthoeni T, Herzog F, Bohn S, Forster F, Aebersold R (2012) Expanding the chemical cross-linking toolbox by the use of multiple proteases and enrichment by size exclusion chromatography. Mol Cell Proteomics 11(3):M111 014126

    Google Scholar 

  61. Weerasekera R, She YM, Markham KA, Bai Y, Opalka N, Orlicky S, Sicheri F, Kislinger T, Schmitt-Ulms G (2007) Interactome and interface protocol (2IP): a novel strategy for high sensitivity topology mapping of protein complexes. Proteomics 7(21):3835–3852

    Article  CAS  Google Scholar 

  62. Fanelli M, Amatori S, Barozzi I, Minucci S (2011) Chromatin immunoprecipitation and high-throughput sequencing from paraffin-embedded pathology tissue. Nat Protoc 6(12):1905–1919

    Article  CAS  Google Scholar 

  63. Gustafsson JO, Oehler MK, McColl SR, Hoffmann P (2010) Citric acid antigen retrieval (CAAR) for tryptic peptide imaging directly on archived formalin-fixed paraffin-embedded tissue. J Proteome Res 9(9):4315–4328

    Article  CAS  Google Scholar 

  64. Casadonte R, Caprioli RM (2011) Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6(11):1695–1709

    Article  CAS  Google Scholar 

  65. Addis MF, Tanca A, Pagnozzi D, Crobu S, Fanciulli G, Cossu-Rocca P, Uzzau S (2009) Generation of high-quality protein extracts from formalin-fixed, paraffin-embedded tissues. Proteomics 9(15):3815–3823

    Article  CAS  Google Scholar 

  66. Azimzadeh O, Barjaktarovic Z, Aubele M, Calzada-Wack J, Sarioglu H, Atkinson MJ, Tapio S (2010) Formalin-fixed paraffin-embedded (FFPE) proteome analysis using gel-free and gel-based proteomics. J Proteome Res 9(9):4710–4720

    Article  CAS  Google Scholar 

  67. Nirmalan NJ, Harnden P, Selby PJ, Banks RE (2009) Development and validation of a novel protein extraction methodology for quantitation of protein expression in formalin-fixed paraffin-embedded tissues using western blotting. J Pathol 217(4):497–506

    Article  CAS  Google Scholar 

  68. Fowler CB, Chesnick IE, Moore CD, O’Leary TJ, Mason JT (2010) Elevated pressure improves the extraction and identification of proteins recovered from formalin-fixed, paraffin-embedded tissue surrogates. PLoS One 5(12):e14253

    Article  Google Scholar 

  69. Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, Sesterhenn IA, Conrads TP, Veenstra TD, Krizman DB (2005) Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 4(11):1741–1753

    Article  CAS  Google Scholar 

  70. Negishi A, Masuda M, Ono M, Honda K, Shitashige M, Satow R, Sakuma T, Kuwabara H, Nakanishi Y, Kanai Y, Omura K, Hirohashi S, Yamada T (2009) Quantitative proteomics using formalin-fixed paraffin-embedded tissues of oral squamous cell carcinoma. Cancer Sci 100(9):1605–1611

    Article  CAS  Google Scholar 

  71. Tanca A, Addis MF, Pagnozzi D, Cossu-Rocca P, Tonelli R, Falchi G, Eccher A, Roggio T, Fanciulli G, Uzzau S (2011) Proteomic analysis of formalin-fixed, paraffin-embedded lung neuroendocrine tumor samples from hospital archives. J Proteomics 74(3):359–370

    Article  CAS  Google Scholar 

  72. Patel V, Hood BL, Molinolo AA, Lee NH, Conrads TP, Braisted JC, Krizman DB, Veenstra TD, Gutkind JS (2008) Proteomic analysis of laser-captured paraffin-embedded tissues: a molecular portrait of head and neck cancer progression. Clin Cancer Res 14(4):1002–1014

    Article  CAS  Google Scholar 

  73. Smart SK, Mackintosh SG, Edmondson RD, Taverna SD, Tackett AJ (2009) Mapping the local protein interactome of the NuA3 histone acetyltransferase. Protein Sci 18(9):1987–1997

    Article  CAS  Google Scholar 

  74. Chowdhury SM, Shi L, Yoon H, Ansong C, Rommereim LM, Norbeck AD, Auberry KJ, Moore RJ, Adkins JN, Heffron F, Smith RD (2009) A method for investigating protein–protein interactions related to Salmonella typhimurium pathogenesis. J Proteome Res 8(3):1504–1514

    Article  CAS  Google Scholar 

  75. Byrum S, Mackintosh SG, Edmondson RD, Cheung WL, Taverna SD, Tackett AJ (2011) Analysis of histone exchange during chromatin purification. J Integr OMICS 1(1):61–65

    Google Scholar 

  76. Kaake RM, Milenkovic T, Przulj N, Kaiser P, Huang L (2010) Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J Proteome Res 9(4):2016–2029

    Article  CAS  Google Scholar 

  77. Muller VS, Jungblut PR, Meyer TF, Hunke S (2011) Membrane-SPINE: an improved method to identify protein–protein interaction partners of membrane proteins in vivo. Proteomics 11(10):2124–2128

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Natural Sciences and Engineering Research Council of Canada for financial support of the formaldehyde cross-linking work performed in their laboratory, and the Canadian Institutes for Health Research and the Canadian Breast Cancer Foundation for general funding. The authors would also like to thank the referees for their instructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Kast.

Additional information

Published in the topical issue Quantitative Mass Spectrometry in Proteomics with guest editors Bernhard Kuster and Marcus Bantscheff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klockenbusch, C., O’Hara, J.E. & Kast, J. Advancing formaldehyde cross-linking towards quantitative proteomic applications. Anal Bioanal Chem 404, 1057–1067 (2012). https://doi.org/10.1007/s00216-012-6065-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6065-9

Keywords

Navigation