Skip to main content
Log in

Dual labeling of biomolecules using MeCAT and DOTA derivatives: application to quantitative proteomics

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, single and dual labeling of primary amino and thiol groups of target peptides is presented as a proof of concept. The proposed method allows flexible, independent and sequential labeling of the mentioned residues using lanthanides introduced via DOTA-complexes (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). The efficiency of the method was optimized using cysteine-containing standard peptides and then applied to bovine serum albumin (BSA) and human serum albumin (HSA) to demonstrate qualitative and quantitative aspects of this strategy. For amino labeling, cysteinyl peptides were immobilized on Sepharose-6B resin and labeled with DOTA-NHS ester followed by metallation with lanthanides. Thiol labeling was carried out using lanthanide-containing metal-coded affinity tags (MeCAT) after elution of peptides from the resin. Complete dual labeling of the standard peptides was demonstrated by liquid chromatography electrospray ionization mass spectrometry, whereas more than 80 % of the detected peptides of BSA and HSA were completely dual-labeled. Parallel detection by LC coupled to inductively coupled plasma mass spectrometry (ICP-MS) delivered reliable quantitative information. Thus, the versatile lanthanide choice in both labeling steps allowed estimating primary amino and thiol stoichiometries for the studied samples using different lanthanides. On the other hand, enhancement of ICP-MS signal was achieved as expected when all positions were labeled with the same lanthanide. Finally, linear calibrations of the signal for most of the labeled peptides by standard additions of digested BSA showed a suitable behaviour for quantitative applications and demonstrated the pre-concentration capability of the employed resin.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hamdan M, Righetti PG (2002) Modern strategies for protein quantification in proteome analysis: advantages and limitations. Mass Spectrom Rev 21(4):287–302

    Article  CAS  Google Scholar 

  2. Lill J (2003) Proteomic tools for quantitation by mass spectrometry. Mass Spectrom Rev 22(3):182–194

    Article  CAS  Google Scholar 

  3. Baldwin MA (2004) Protein identification by mass spectrometry. Mol Cell Proteomics 3(1):1–9

    CAS  Google Scholar 

  4. Ong S-E, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262

    Article  CAS  Google Scholar 

  5. Stein RC, Zvelebil MJ (2002) The application of 2D gel-based proteomics methods to the study of breast cancer. J Mammary Gland Biol Neoplasia 7(4):385–393

    Article  Google Scholar 

  6. Washburn MP, Ulaszek RR, Yates JR (2003) Reproducibility of quantitative proteomic analyses of complex biological mixtures by multidimensional protein identification technology. Anal Chem 75(19):5054–5061

    Article  CAS  Google Scholar 

  7. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotech 17(10):994–999

    Article  CAS  Google Scholar 

  8. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  CAS  Google Scholar 

  9. Bettmer J, Montes Bayón M, Ruiz Encinar J, Fernández Sánchez ML, de la Campa F, Mdel R, Sanz Medel A (2009) The emerging role of ICP-MS in proteomic analysis. J Proteomics 72(6):989–1005

    Article  CAS  Google Scholar 

  10. Wind M, Wegener A, Eisenmenger A, Kellner R, Lehmann WD (2003) Sulfur as the key element for quantitative protein analysis by capillary liquid chromatography coupled to element mass spectrometry. Angew Chem Int Ed 42(29):3425–3427

    Article  CAS  Google Scholar 

  11. Siethoff C, Feldmann I, Jakubowski N, Linscheid M (1999) Quantitative determination of DNA adducts using liquid chromatography/electrospray ionization mass spectrometry and liquid chromatography/high-resolution inductively coupled plasma mass spectrometry. J Mass Spectrom 34(4):421–426

    Article  CAS  Google Scholar 

  12. Wind M, Edler M, Jakubowski N, Linscheid M, Wesch H, Lehmann WD (2000) Analysis of protein phosphorylation by capillary liquid chromatography coupled to element mass spectrometry with 31P detection and to electrospray mass spectrometry. Anal Chem 73(1):29–35

    Article  Google Scholar 

  13. Pereira Navaza A, Ruiz Encinar J, Sanz-Medel A (2007) Absolute and accurate quantification of protein phosphorylation by using an elemental phosphorus standard and element mass spectrometry. Angew Chem Int Ed 46(4):569–571

    Article  CAS  Google Scholar 

  14. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    Article  CAS  Google Scholar 

  15. Prange A, Profrock D (2008) Chemical labels and natural element tags for the quantitative analysis of bio-molecules. J Anal At Spectrom 23(4):432–459

    Article  CAS  Google Scholar 

  16. Jakubowski N, Messerschmidt J, Anorbe MG, Waentig L, Hayen H, Roos PH (2008) Labelling of proteins by use of iodination and detection by ICP-MS. J Anal At Spectrom 23(11):1487–1496

    Article  CAS  Google Scholar 

  17. Bomke S, Pfeifer T, Meermann B, Buscher W, Karst U (2010) Liquid chromatography with complementary electrospray and inductively coupled plasma mass spectrometric detection of ferrocene-labelled peptides and proteins. Anal Bioanal Chem 397(8):3503–3513

    Article  CAS  Google Scholar 

  18. Esteban-Fernández D, Gómez-Gómez MM, Cañas B, Verdaguer JM, Ramírez R, Palacios MA (2007) Speciation analysis of platinum antitumoral drugs in impacted tissues. Talanta 72(2):768–773

    Article  Google Scholar 

  19. Kutscher DJ, Bettmer J (2009) Absolute and relative protein quantification with the use of isotopically labeled p-hydroxymercuribenzoic acid and complementary MALDI-MS and ICPMS detection. Anal Chem 81(21):9172–9177

    Article  CAS  Google Scholar 

  20. Rappel C, Schaumlöffel D (2008) Absolute peptide quantification by lutetium labeling and NanoHPLC−ICPMS with isotope dilution analysis. Anal Chem 81(1):385–393

    Article  Google Scholar 

  21. Jakubowski N, Waentig L, Hayen H, Venkatachalam A, von Bohlen A, Roos PH, Manz A (2008) Labelling of proteins with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid and lanthanides and detection by ICP-MS. J Anal At Spectrom 23(11):1497–1507

    Article  CAS  Google Scholar 

  22. Zheng L-N, Wang M, Wang H-J, Wang B, Li B, Li J-J, Zhao Y-L, Chai Z-F, Feng W-Y (2011) Quantification of proteins using lanthanide labeling and HPLC/ICP-MS detection. J Anal At Spectrom 26(6):1233–1236

    Article  CAS  Google Scholar 

  23. Ahrends R, Pieper S, Kühn A, Weisshoff H, Hamester M, Lindemann T, Scheler C, Lehmann K, Taubner K, Linscheid MW (2007) A metal-coded affinity tag approach to quantitative proteomics. Mol Cell Proteomics 6(11):1907–1916

    Article  CAS  Google Scholar 

  24. Schwarz G, Beck S, Weller M, Linscheid M (2011) MeCAT—new iodoacetamide reagents for metal labeling of proteins and peptides. Anal Bioanal Chem 401(4):1203–1209

    Article  CAS  Google Scholar 

  25. Ahrends R, Pieper S, Neumann B, Scheler C, Linscheid MW (2009) Metal-coded affinity tag labeling: a demonstration of analytical robustness and suitability for biological applications. Anal Chem 81(6):2176–2184

    Article  CAS  Google Scholar 

  26. Pieper S, Beck S, Ahrends R, Scheler C, Linscheid MW (2009) Fragmentation behavior of metal-coded affinity tag (MeCAT)-labeled peptides. Rapid Commun Mass Spectrom 23(13):2045–2052

    Article  CAS  Google Scholar 

  27. Yan X, Xu M, Yang L, Wang Q (2010) Absolute quantification of intact proteins via 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid−10-maleimidoethylacetamide−europium labeling and HPLC coupled with species-unspecific isotope dilution ICPMS. Anal Chem 82(4):1261–1269

    Article  CAS  Google Scholar 

  28. Esteban-Fernández D, Scheler C, Linscheid M (2011) Absolute protein quantification by LC-ICP-MS using MeCAT peptide labeling. Anal Bioanal Chem 401(2):657–666

    Article  Google Scholar 

  29. Lou X, Zhang G, Herrera I, Kinach R, Ornatsky O, Baranov V, Nitz M, Winnik MA (2007) Polymer-based elemental tags for sensitive bioassays. Angew Chem Int Ed 46(32):6111–6114

    Article  CAS  Google Scholar 

  30. Zhang Z, Yan X, Xu M, Yang L, Wang Q (2011) A dual-labelling strategy for integrated ICPMS and LIF for the determination of peptides. J Anal At Spectrom 26(6):1175–1177

    Article  CAS  Google Scholar 

  31. Liu T, Qian W-J, Strittmatter EF, Camp DG, Anderson GA, Thrall BD, Smith RD (2004) High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal Chem 76(18):5345–5353

    Article  CAS  Google Scholar 

  32. Shafer DE, Inman JK, Lees A (2000) Reaction of tris(2-carboxyethyl)phosphine (TCEP) with maleimide and α-haloacyl groups: anomalous elution of TCEP by gel filtration. Anal Biochem 282(1):161–164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the DFG (German Research Foundation). A.H. E-K thanks the Egyptian Ministry of High Education and DAAD (German Academic Exchange Service) for the scholarship (GERLS program). D. E-F acknowledges the European Commission for the post-doctoral Marie Curie Intra-European fellowship for career development under the seventh Framework Programme. The authors are also very grateful to Thermo Fisher Scientific for the generous instrumental and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Esteban-Fernández.

Additional information

Published in the special issue Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, J. Bettmer, T. Hasegawa, Q. Wang and Y. Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Khatib, A.H., Esteban-Fernández, D. & Linscheid, M.W. Dual labeling of biomolecules using MeCAT and DOTA derivatives: application to quantitative proteomics. Anal Bioanal Chem 403, 2255–2267 (2012). https://doi.org/10.1007/s00216-012-5910-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5910-1

Keywords

Navigation