Skip to main content
Log in

Time course of expiratory propofol after bolus injection as measured by ion molecule reaction mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Propofol in exhaled breath can be detected and monitored in real time by ion molecule reaction mass spectrometry (IMR-MS). In addition, propofol concentration in exhaled breath is tightly correlated with propofol concentration in plasma. Therefore, real-time monitoring of expiratory propofol could be useful for titrating intravenous anesthesia, but only if concentration changes in plasma can be determined in exhaled breath without significant delay. To evaluate the utility of IMR-MS during non-steady-state conditions, we measured the time course of both expiratory propofol concentration and the processed electroencephalography (EEG) as a surrogate outcome for propofol effect after an IV bolus induction of propofol. Twenty-one patients scheduled for routine surgery were observed after a bolus of 2.5 mg kg−1 propofol for induction of anesthesia. Expiratory propofol was measured using IMR-MS and the cerebral propofol effect was estimated using the bispectral index (BIS). Primary endpoints were time to detection of expiratory propofol and time to onset of propofol’s effect on BIS, and the secondary endpoint was time to peak effect (highest expiratory propofol or lowest BIS). Expiratory propofol and changes in BIS were first detected at 43 ± 21 and 49 ± 11 s after bolus injection, respectively (P = 0.29). Peak propofol concentrations (9.2 ± 2.4 parts-per-billion) and lowest BIS values (23 ± 4) were reached after 208 ± 57 and 219 ± 62 s, respectively (P = 0.57). Expiratory propofol concentrations measured by IMR-MS have similar times to detection and peak concentrations compared with propofol effect as measured by the processed EEG (BIS). This suggests that expiratory propofol concentrations may be useful for titrating intravenous anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boshier PR, Cushnir JR, Mistry V, Knaggs A, Spanel P, Smith D, Hanna GB (2011) On-line, real time monitoring of exhaled trace gases by SIFT-MS in the perioperative setting: a feasibility study. Analyst 136(16):3233–3237. doi:10.1039/c1an15356k

    Article  CAS  Google Scholar 

  2. Grossherr M, Hengstenberg A, Meier T, Dibbelt L, Igl BW, Ziegler A, Schmucker P, Gehring H (2009) Propofol concentration in exhaled air and arterial plasma in mechanically ventilated patients undergoing cardiac surgery. Br J Anaesth 102(5):608–613. doi:10.1093/bja/aep053

    Article  CAS  Google Scholar 

  3. Harrison GR, Critchley AD, Mayhew CA, Thompson JM (2003) Real-time breath monitoring of propofol and its volatile metabolites during surgery using a novel mass spectrometric technique: a feasibility study. Br J Anaesth 91(6):797–799

    Article  CAS  Google Scholar 

  4. Hornuss C, Praun S, Villinger J, Dornauer A, Moehnle P, Dolch M, Weninger E, Chouker A, Feil C, Briegel J, Thiel M, Schelling G (2007) Real-time monitoring of propofol in expired air in humans undergoing total intravenous anesthesia. Anesthesiology 106(4):665–674. doi:10.1097/01.anes.0000264746.01393.e0

    Article  CAS  Google Scholar 

  5. Kamysek S, Fuchs P, Schwoebel H, Roesner JP, Kischkel S, Wolter K, Loeseken C, Schubert JK, Miekisch W (2011) Drug detection in breath: effects of pulmonary blood flow and cardiac output on propofol exhalation. Anal Bioanal Chem 401(7):2093–2102. doi:10.1007/s00216-011-5099-8

    Article  CAS  Google Scholar 

  6. Miekisch W, Fuchs P, Kamysek S, Neumann C, Schubert JK (2008) Assessment of propofol concentrations in human breath and blood by means of HS-SPME-GC-MS. Clin Chim Acta Int J Clin Chem 395(1-2):32–37. doi:10.1016/j.cca.2008.04.021

    Article  CAS  Google Scholar 

  7. Perl T, Carstens E, Hirn A, Quintel M, Vautz W, Nolte J, Junger M (2009) Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaesth 103(6):822–827

    Article  CAS  Google Scholar 

  8. Takita A, Masui K, Kazama T (2007) On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology 106(4):659–664. doi:10.1097/01.anes.0000264745.63275.59

    Article  CAS  Google Scholar 

  9. Grossherr M, Hengstenberg A, Meier T, Dibbelt L, Gerlach K, Gehring H (2006) Discontinuous monitoring of propofol concentrations in expired alveolar gas and in arterial and venous plasma during artificial ventilation. Anesthesiology 104(4):786–790

    Article  CAS  Google Scholar 

  10. Kreuer S, Wilhelm W, Grundmann U, Larsen R, Bruhn J (2004) Narcotrend index versus bispectral index as electroencephalogram measures of anesthetic drug effect during propofol anesthesia. Anesth Analg 98:692–697. doi:10.1213/01.ane.0000103182.78466.ef

    Article  CAS  Google Scholar 

  11. Masui K, Kira M, Kazama T, Hagihira S, Mortier EP, Struys MM (2009) Early phase pharmacokinetics but not pharmacodynamics are influenced by propofol infusion rate. Anesthesiology 111(4):805–817

    Article  CAS  Google Scholar 

  12. King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S, Teschl G, Miekisch W, Schubert J, Hinterhuber H, Amann A (2009) Isoprene and acetone concentration profiles during exercise on an ergometer. J Breath Res 3(2):027006. doi:10.1088/1752-7155/3/2/027006

    Article  CAS  Google Scholar 

  13. Dolch ME, Frey L, Hornuss C, Schmoelz M, Praun S, Villinger J, Schelling G (2008) Molecular breath-gas analysis by online mass spectrometry in mechanically ventilated patients: a new software-based method of CO(2)-controlled alveolar gas monitoring. J Breath Res 2(3):037010. doi:10.1088/1752-7155/2/3/037010

    Article  CAS  Google Scholar 

  14. Boer F (2003) Drug handling by the lungs. Br J Anaesth 91(1):50–60

    Article  CAS  Google Scholar 

  15. He YL, Ueyama H, Tashiro C, Mashimo T, Yoshiya I (2000) Pulmonary disposition of propofol in surgical patients. Anesthesiology 93(4):986–991

    Article  CAS  Google Scholar 

  16. Grossherr M, Varadarajan B, Dibbelt L, Schmucker P, Gehring H, Hengstenberg A (2011) Time course of ethanol and propofol exhalation after bolus injection using ion molecule reaction-mass spectrometry. Anal Bioanal Chem 401(7):2063–2067. doi:10.1007/s00216-010-4042-8

    Article  CAS  Google Scholar 

  17. Ellerkmann RK, Soehle M, Alves TM, Liermann VM, Wenningmann I, Roepcke H, Kreuer S, Hoeft A, Bruhn J (2006) Spectral entropy and bispectral index as measures of the electroencephalographic effects of propofol. Anesth Analg 102(5):1456–1462

    Article  CAS  Google Scholar 

  18. Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 86(4):836–847

    Article  CAS  Google Scholar 

  19. Kreuer S, Bruhn J, Larsen R, Bialas P, Wilhelm W (2004) Comparability of Narcotrend index and bispectral index during propofol anaesthesia. Br J Anaesth 93(2):235–240. doi:10.1093/bja/aeh182

    Article  CAS  Google Scholar 

  20. Struys MM, Coppens MJ, De Neve N, Mortier EP, Doufas AG, Van Bocxlaer JF, Shafer SL (2007) Influence of administration rate on propofol plasma-effect site equilibration. Anesthesiology 107(3):386–396. doi:10.1097/01.anes.0000278902.15505.f8

    Article  CAS  Google Scholar 

Download references

Funding sources

This work was funded by departmental funds of the Department of Anaesthesiology at the Ludwig-Maximilians-University, Munich, Germany. Additionally, V&F medical development supported the study by providing an ion molecule reaction mass spectrometry system during the study period. Siegfried Praun, Ph.D. is a scientist employed by the company that holds the patent on the ion molecule reaction mass spectrometry technology. Cyrill Hornuss, M.D. received an indirect research grant from V&F. V&F reimbursed the travel expenses of Cyrill Hornuss and Michael Dolch, M.D. to the ASA annual meetings and the German Anaesthesia Congress (DAC) 2006–2009. No other personal funding or other financial support was received by any author; this includes contracts, equity interest, stock option(s), direct or indirect salary support, consultant fee(s), or honoraria within a period of 5 years of the date of submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill Hornuss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornuss, C., Wiepcke, D., Praun, S. et al. Time course of expiratory propofol after bolus injection as measured by ion molecule reaction mass spectrometry. Anal Bioanal Chem 403, 555–561 (2012). https://doi.org/10.1007/s00216-012-5856-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5856-3

Keywords

Navigation