Skip to main content
Log in

Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bonner RF, Nossal R, Havlin S, Weiss GH (1987) J Opt Soc Am 4:423

    Article  CAS  Google Scholar 

  2. Matousek P, Everall N, Towrie M, Parker AW (2005) Appl Spectrosc 59:200

    Article  CAS  Google Scholar 

  3. Izake EL (2010) Forensic Sci Int 202:1

    Article  CAS  Google Scholar 

  4. Matousek P, Clark IP, Draper ERC, Morris MD, Goodship AE, Everall N, Towrie M, Finney WF, Parker AW (2005) Appl Spectrosc 59:393

    Article  CAS  Google Scholar 

  5. Macleod NA, Goodship A, Parker AW, Matousek P (2008) Anal Chem 80:8146

    Article  CAS  Google Scholar 

  6. Utzinger U, Richards-Kortum RR (2003) J Biomed Opt 8:121

    Article  Google Scholar 

  7. Keller MD, Vargis E, Granja ND, Wilson RH, Mycek M, Kelley MC, Mahadevan-Jansena A (2011) J Biomed Opt 16:1

    Article  Google Scholar 

  8. Ricci C, Eliasson C, Macleod NA, Newton PN, Matousek P, Kazarian SG (2007) Anal Bioanal Chem 389:1525

    Article  CAS  Google Scholar 

  9. Macleod N, Matousek P (2008) Pharm Res 25:2205

    Article  CAS  Google Scholar 

  10. Olds W, Jaatinen E, Fredericks P, Cletus B, Panayiotou H, Izake EL (2011) Forensic Sci Int 212:69

    Article  CAS  Google Scholar 

  11. Ariese F, Meuzelaar H, Kerssens MM, Buijs JB, Gooijer C (2009) Analyst 134:1192

    Article  CAS  Google Scholar 

  12. Petterson EI, Lopez-Lopez M, Garcia-Ruiz C, Gooijer C, Buijs JB, Ariese F (2011) Anal Chem 83:8517

    Article  Google Scholar 

  13. Zachhuber B, Gasser C, Chrysostom E, Lendl B (2011) Anal Chem 83:9438

    Article  CAS  Google Scholar 

  14. Petterson IE, Dvořàk P, Buijs JB, Gooijer C, Ariese F (2010) Analyst 135:3255

    Article  Google Scholar 

  15. Matousek P (2006) Appl Spectrosc 60:1341

    Article  CAS  Google Scholar 

  16. Cletus B, Olds W, Izake EL, Fredericks P, Panayiotou H, Jaatinen E (2011) Proc SPIE 8032:1

    Google Scholar 

  17. Matousek P (2007) Chem Soc Rev 36:1292

    Article  CAS  Google Scholar 

  18. Martyshkin DV, Ahuja RC, Kudriavtsev A, Mirov SB (2004) Rev Sci Instrum 75:630

    Article  CAS  Google Scholar 

  19. Efremov EV, Buijs JB, Gooijer C, Ariese F (2007) Appl Spectrosc 61:571

    Article  CAS  Google Scholar 

  20. Everall N, Hahn T, Matousek P, Parker AW, Towrie M (2001) Appl Spectrosc 55:1701

    Article  CAS  Google Scholar 

  21. Matousek P, Towrie M, Ma C, Kwok WM, Phillips D, Toner WT, Parker AW (2001) J Raman Spectrosc 32:983

    Article  CAS  Google Scholar 

  22. Sinfield JV, Collic O, Fagerman D, Monwuba C (2010) Appl Spectrosc 64:201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Security Science and Technology scheme (Department of the Prime Minister and Cabinet, Australian Government), the Queensland Government (National and International Research Alliance Partnerships scheme), Australian Future Forensics Innovation Network (AFFIN), Queensland health forensic scientific services and the Australian Federal Police.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad L. Izake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cletus, B., Olds, W., Izake, E.L. et al. Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards. Anal Bioanal Chem 403, 255–263 (2012). https://doi.org/10.1007/s00216-012-5792-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5792-2

Keywords

Navigation