Skip to main content
Log in

Probing substrate–product relationships by natural abundance deuterium 2D NMR spectroscopy in liquid-crystalline solvents: epoxidation of linoleate to vernoleate by two different plant enzymes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Natural abundance deuterium 2D NMR spectroscopy in weakly ordering, polypeptide chiral liquid crystals is a powerful technique that enables determination of enantiotopic isotopic ratios (2H/1H) i at the methylene groups of long-chain fatty acids. This technique has been used to study the bioconversion of linoleic acid to vernoleic acid with the objective of establishing the in-vivo site-specific fractionation of 2H associated with this process. The fractionation pattern was investigated in Euphorbia lagascae and Vernonia galamensis, plants that use different enzyme systems to perform the Δ12-epoxidation: a cytochrome P450 monooxygenase in the former and a di-iron dioxygenase in the latter. The specific interest in this study was to ascertain whether different (2H/1H) i isotopic ratios in substrate and product might reflect distinct features of the nature of the reaction centre. However, both the linoleate (substrate) samples and both vernoleate (product) samples isolated from the seed oils of the two plants had remarkably similar 2H isotope profiles, with selection against 2H in the positions around the Δ12-epoxidation site. This is interpreted as indicating that, despite differences in the form in which the activated Fe is presented and in the architecture of the active site, the (2H/1H) i isotopic pattern is determined by features common to the reaction. It is suggested that the effects acting as the overall determinants of the final (2H/1H) i distribution in the product are the encumbrance of the active site pocket and constraints to conformational readjustment during the linoleate to vernoleate transformation.

Changes in the (2H/1H)i ratios in converting methyl linoleate to methyl vernoleate in either V. galamensis or E. lagascae indicate isotopic fractionations independent of the type of enzyme reaction centre carrying out the epoxidation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lesot P, Baillif V, Billault I (2008) Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents. Anal Chem 80:2963–2972

    Article  CAS  Google Scholar 

  2. Serhan Z, Martel L, Billault I, Lesot P (2010) Complete determination of natural site-specific enantio-isotopomeric excesses in linoleic acid using natural abundance deuterium 2D NMR in polypeptide mesophases. Chem Commun 46:6599–6601

    Article  CAS  Google Scholar 

  3. Lesot P, Serhan Z, Billault I (2011) Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural-abundance 2H NMR spectroscopy: application to conjugated linolenic methyl esters. Anal Bioanal Chem 399:1187–1200

    Article  CAS  Google Scholar 

  4. Baillif V, Robins RJ, Le Feunteun S, Lesot P, Billault I (2009) Investigation of fatty acid elongation and desaturation steps in Fusarium lateritium by quantitative two-dimensional deuterium NMR spectroscopy in chiral oriented media. J Biol Chem 284:10783–10792

    Article  CAS  Google Scholar 

  5. Behrouzian B, Buist PH (2002) Fatty acid desaturation: variations on an oxidative theme. Curr Opinion Chem Biol 6:577–582

    Article  CAS  Google Scholar 

  6. Blée E, Schuber F (1990) Efficient epoxidation of unsaturated fatty acids by hydroperoxide-dependent oxygenase. J Biol Chem 265:12887–12894

    Google Scholar 

  7. Blée E (1998) Phytooxylipins and plant defense reactions. Prog Lipid Res 37:33–72

    Article  Google Scholar 

  8. Lee M, Lenman M, Banas A, Bafor M, Singh S, Schweizer M, Nilsson R, Liljenberg C, Dahlqvist A, Gummeson P-O, Sjödahl S, Green A, Stymne S (1998) Identification of non–heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280:915–918

    Article  CAS  Google Scholar 

  9. Sauveplane V, Kandel S, Kastner P-E, Ehlting J, Compagnon V, Werck-Reichhart D, Pinot F (2009) Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. FEBS J 276:719–735

    Article  CAS  Google Scholar 

  10. Broadwater J, Whittle E, Shanklin J (2002) Desaturation and hydroxylation: residues 148 and 324 of Arabidopsis fad2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem 277:15613–15620

    Article  Google Scholar 

  11. Billault I, Duan J-R, Guiet S, Robins RJ (2005) Quantitative deuterium isotopic profiling at natural abundance indicates mechanistic differences for Δ12-epoxidase in Vernonia galamensis. J Biol Chem 280:17645–17651

    Article  CAS  Google Scholar 

  12. Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S (1993) Biosynthesis of vernoleate (cis-12-epoxyoctodeca-cis-9-enoate) in microsomal preparations from developing endosperm of Euphorbia lagascae. Arch Biochem Biophys 303:145–151

    Article  CAS  Google Scholar 

  13. Blée E, Stahl U, Schuber F, Stymne S (1993) Regio- and stereoselectivity of cytochrome P-450 and peroxygenase dependent formation of cis-12,13-epoxy-9(Z)-octadecenoic acid (vernolic acid) in Euphorbia lagascae. Biochem Biophys Res Commun 197:778–784

    Article  Google Scholar 

  14. Gilbert A, Silvestre V, Robins RJ, Tcherkez G, Remaud G (2011) A 13 C NMR spectrometric method to determine the intramolecular δ13C values in fructose from plant sucrose samples. New Phytol 191:579–588

    Article  CAS  Google Scholar 

  15. Delorme D, Girard Y, Rokach J (1989) Total synthesis of Leukotriene E4 metabolites and precursors to radiolabeled forms of those metabolites. J Org Chem 54:3635–3640

    Article  CAS  Google Scholar 

  16. Bradshaw RW, Day AC, Jones ERH, Page CB, Thaller V, Vere Hodge RA (1971) Natural acetylenes. Part XXXII. A synthesis of crepenynic acid (octadec-9-en-12-ynoic acid). J Chem Soc (C):1156–1158

  17. Sarfati M, Lesot P, Merlet D, Courtieu J (2000) Theoretical and experimental aspects of enantiomeric differentiation using natural abundance multinuclear NMR spectroscopy in chiral polypeptide liquid crystals. Chem Comm:2069–2081

  18. Lesot P, Sarfati M, Courtieu J (2003) Natural Abundance Deuterium NMR spectroscopy in polypeptide liquid crystals as a new and incisive means for the enantiodifferentiation of chiral hydrocarbons. Chem Eur J 9:1724–1745

    Article  CAS  Google Scholar 

  19. Lafon O, Lesot P, Merlet D, Courtieu J (2004) Modified z-gradient filtering as a mean to obtain phased deuterium autocorrelation 2D NMR spectra in oriented solvents. J Magn Reson 171:135–142

    Article  CAS  Google Scholar 

  20. Martin M, Martin G (1990) Deuterium NMR in the study of site-specific natural isotope fractionation (SNIF-NMR). In: Diehl P, Fluck E, Günther H, Kosfeld R, Seelig J (eds) NMR Basic Principles and Progress. Springer, Berlin, 1–63

  21. Lesot P, Aroulanda C, Billault I (2004) Exploring the analytical potential of NMR spectroscopy in chiral anisotropic media for the study of the natural abundance deuterium distribution in organic molecules. Anal Chem 76:2827–2835

    Article  CAS  Google Scholar 

  22. Duan J-R, Billault I, Mabon F, Robins RJ (2002) Natural deuterium distribution in fatty acids isolated from peanut seed oil: A site-specific study by quantitative 2H NMR spectroscopy. ChemBioChem 3:752–759

    Article  CAS  Google Scholar 

  23. Chikaraishi Y, Naraoka H, Poulson SR (2004) Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry 65:1369–1381

    Article  CAS  Google Scholar 

  24. Morris LJ, Wharry DM (1966) Naturally occurring epoxy acids. IV. The absolute optical configuration of vernolic acid. Lipids 1:41–46

    Article  CAS  Google Scholar 

  25. Baillif V, Robins RJ, Billault I, Lesot P (2006) Assignment of absolute configuration of natural abundance deuterium signals associated with (R)- and (S)-enantioisotopomers in a fatty acid aligned in a chiral liquid crystal: enantioselective synthesis and NMR analysis. J Am Chem Soc 128:11180–11187

    Article  CAS  Google Scholar 

  26. Buist P, Behrouzian B (1998) Deciphering the cryptoregiochemistry of oleate Δ12 desaturase: a kinetic isotope effect study. J Am Chem Soc 120:871–876

    Article  CAS  Google Scholar 

  27. Robins RJ, Billault I, Duan J-R, Guiet S, Pionnier S, Zhang B-L (2003) Measurement of 2H distribution in natural products by quantitative NMR: an approach to understanding metabolism and enzyme mechanism? Phytochem Rev 2:87–102

    Article  CAS  Google Scholar 

  28. Ortiz de Montalleno PR, de Voss JJ (2005) Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450, Structure, Mechanism and Biochemistry. Kluwer Academic/Plenum Publishers, New York, 183–245

  29. Houk K, Liu J, DeMello NC, Condroski KR (1997) Transition states of epoxidations: diradical character, spiro geometries, transition state flexibility, and the origin of stereoselectivity. J Am Chem Soc 119:10147–10152

    Article  CAS  Google Scholar 

  30. Singleton DA, Merrigan S, Liu J, Houk K (1997) The experimental geometry of the epoxidation transition state. J Am Chem Soc 119:3385–3386

    Article  CAS  Google Scholar 

  31. Hanzlik RP, Shearer GO (1978) Secondary deuterium isotope effects on olefin epoxidation by cytochrome P-450. Biochem Pharmacol 27:1441–1444

    Article  CAS  Google Scholar 

  32. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  CAS  Google Scholar 

  33. Jacquot C, Peng S, van der Donk WA (2008) Kinetic isotope effects in the oxidation of arachidonic acid by soybean lipoxygenase-1. Bioorg Med Chem Lett 18:5959–5962

    Article  CAS  Google Scholar 

  34. Robins RJ, Pétavy F, Nemmaoui Y, Ayadi F, Silvestre V, Zhang B-L (2008) Non-equivalence of hydrogen transfer from glucose to the pro-R and pro-S methylene positions of ethanol during fermentation by Leuconostoc mesenteroides quantified by 2H NMR at natural abundance. J Biol Chem 283:9704–9712

    Article  CAS  Google Scholar 

  35. Martin GJ, Lavoine-Hanneguelle S, Mabon F, Martin ML (2004) The fellowship of natural abundance 2H-isotopomers of monoterpenes. Phytochemistry 65:2815–2831

    Article  CAS  Google Scholar 

  36. Markai S, Marchand PA, Mabon F, Baguet E, Billault I, Robins RJ (2002) Natural deuterium distribution in branched-chain medium-length fatty acids is nonstatistical: A site-specific study by quantitative 2H NMR spectroscopy of the fatty acids of capsaicinoids. ChemBioChem 3:212–218

    Article  CAS  Google Scholar 

  37. Schmidt H-L, Werner RA, Eisenreich W, Fuganti C, Fronza G, Remaud G, Robins RJ (2006) The prediction of isotopic patterns in phenylpropanoids from their precursors and the mechanism of the NIH-shift: Basis of the isotopic characteristics of natural aromatic compounds. Phytochemistry 67:1094–1103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

LP and RJR thank the CNRS for regular funding. We thank the United States Department of Agriculture and Professor Sten Stymne for seed oil samples. We are most grateful to Dr Renata Kwiecień for performing the Gaussian09 calculations and to her and Jacques Lebreton for discussions of epoxidation mechanisms.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabelle Billault or Richard J Robins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billault, I., Le Du, A., Ouethrani, M. et al. Probing substrate–product relationships by natural abundance deuterium 2D NMR spectroscopy in liquid-crystalline solvents: epoxidation of linoleate to vernoleate by two different plant enzymes. Anal Bioanal Chem 402, 2985–2998 (2012). https://doi.org/10.1007/s00216-012-5748-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5748-6

Keywords

Navigation