Skip to main content
Log in

Identification of phospholipid species affected by miltefosine action in Leishmania donovani cultures using LC-ELSD, LC-ESI/MS, and multivariate data analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Leishmaniasis is a widespread parasitic disease principally treated by intravenous drugs. Hexadecylphosphocholine (miltefosine) has recently proved its efficacy by oral route. Although its mechanism of action has been investigated, and principally relies on perturbations of the metabolism of lipids and especially phospholipids, further studies need to be conducted to detect precisely which metabolic pathways are impacted. For this purpose, the present work proposes a complete lipidomic study focused on membrane phospholipids of clones of Leishmania donovani non-treated (NT), treated (T) and resistant (R) to miltefosine. Firstly, a separation of phospholipids in normal phase high-performance liquid chromatography (NP-HPLC) was coupled to a mass spectrometer (MS) equipped with an electrospray (ESI) ion source, and response was compared to evaporative light scattering detection (ELSD). Secondly, a quantification of phospholipid classes was performed using NP-HPLC/ESI/MS on NT, T and R clones of L. donovani. Thirdly, full-scan acquisitions of analyzed samples were compared using orthogonal signal correction-partial least square-discriminant analysis (OSC-PLS-DA) to highlight phospholipid molecular species of interest between the three types of clones. Structural determination of the most relevant species has finally been performed using tandem mass spectrometry. A first hypothesis on the effect of miltefosine on lipid metabolic pathways is then proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. WHO | Leishmaniasis: background information

  2. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882

    Article  CAS  Google Scholar 

  3. Maltezou HC (2010) Drug resistance in visceral leishmaniasis. J Biomed Biotechnol 2010:617–521

    Article  Google Scholar 

  4. Croft S, Neal R, Pendergast W, Chan J (1987) The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol 36:2633–2636

    Article  CAS  Google Scholar 

  5. Croft SL, Snowdon D, Yardley V (1996) The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J Antimicrob Chemother 38:1041–1047

    Article  CAS  Google Scholar 

  6. Kuhlencord A, Maniera T, Eibl H, Unger C (1992) Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother 36:1630–1634

    CAS  Google Scholar 

  7. Sundar S, Rosenkaimer F, Makharia MK, Goyal AK, Mandal AK, Voss A, Hilgard P, Murray HW (1998) Trial of oral miltefosine for visceral leishmaniasis. Lancet 352:1821–1823

    Article  CAS  Google Scholar 

  8. Jha T, Sundar T, Thakur C, Bachmann P, Karbwang J, Fischer C, Voss A, Berman J (1999) Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med 341:1795–1800

    Article  CAS  Google Scholar 

  9. Rakotomanga M, Loiseau PM, Saint-Pierre-Chazalet M (2004) Hexadecylphosphocholine interaction with lipid monolayers. Biochim Biophys Acta 1661:212–218

    Article  CAS  Google Scholar 

  10. Rakotomanga M, Blanc S, Gaudin K, Chaminade P, Loiseau PM (2007) Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51(4):1425–1430

    Article  CAS  Google Scholar 

  11. Zhang K, Beverley SM (2010) Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 170:55–64

    Article  CAS  Google Scholar 

  12. Peterson BL, Cummings BS (2006) A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr 20:227–243

    Article  CAS  Google Scholar 

  13. Christie W (1985) Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res 26:507–512

    CAS  Google Scholar 

  14. Christie WW (1986) Separation of lipid classes by high-performance liquid chromatography with the “mass detector”. J Chromatogr 361:396–399

    Article  CAS  Google Scholar 

  15. Stolywho A, Martin M, Guiochon G (1987) Analysis of lipid classes by HPLC with the evaporative light-scattering detector. J Liq Chromatogr 10:1237–1253

    Article  Google Scholar 

  16. Vandermeeren P, Vanderdeelen J, Huys M, Baert L (1988) Simple and rapid method for high-performance liquid-chromatographic separation and quantification of soybean phospholipids. J Chromatogr 447:436–442

    Article  CAS  Google Scholar 

  17. Breton L, Serkiz B, Volland J, Lepagnol J (1989) A new rapid method for phospholipid separation by high-performance liquid-chromatography with light-scattering detection. J Chromatogr 497:243–249

    Article  CAS  Google Scholar 

  18. Becart J, Chevalier C, Biesse J (1990) Quantitative-analysis of phospholipids by HPLC with a light-scattering evaporating detector—application to raw-materials for cosmetic use. J High Resolut Chromatogr 13:126–129

    Article  CAS  Google Scholar 

  19. Godoy Ramos R, Libong D, Rakotomanga M, Gaudin K, Loiseau PM, Chaminade P (2008) Comparison between charged aerosol detection and light scattering detection for the analysis of Leishmania membrane phospholipids. J Chromatogr A 1209:88–94

    Article  Google Scholar 

  20. Díaz-López R, Libong D, TsapisN FE, Chaminade P (2008) Quantification of pegylated phospholipids decorating polymeric microcapsules of perfluorooctyl bromide by reverse phase HPLC with a charged aerosol detector. J Pharm Biomed Anal 48:702–707

    Article  Google Scholar 

  21. Nair LM, Werling JO (2009) Aerosol based detectors for the investigation of phospholipid hydrolysis in a pharmaceutical suspension formulation. J Pharm Biomed Anal 49:95–99

    Article  CAS  Google Scholar 

  22. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364

    Article  CAS  Google Scholar 

  23. Carrasco-Pancorbo A, Navas-Iglesias N, Cuadros-Rodríguez L (2009) From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: modern lipid analysis. Trends Anal Chem 28:263–278

    Article  CAS  Google Scholar 

  24. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodríguez L (2009) From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: analytical lipidomics. Trends Anal Chem 28:393–403

    Article  CAS  Google Scholar 

  25. Evans GA (2000) Designer science and the “omic” revolution. Nat Biotechnol 18:127

    Article  CAS  Google Scholar 

  26. Romero R, Espinoza J, Gotsch F, Kusanovic JP, Friel LA, Erez O, Mazaki-Tovi S, Than NG, Hassan S, Tromp G (2006) The use of high-dimensional biology (genomics, transcriptomics, proteomics, and metabolomics) to understand the preterm parturition syndrome. BJOG 113:118–135

    Article  CAS  Google Scholar 

  27. Oldiges M, Lütz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511

    Article  CAS  Google Scholar 

  28. Lu X, Xu G (2008) Biomarker methods in drug discovery and development. Humana, Totowa, NJ

    Google Scholar 

  29. Eriksson L, Antti H, Gottfries J, Holmes E, Johansson E, Lindgren F, Long I, Lundstedt T, Trygg J, Wold S (2004) Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm). Anal Bioanal Chem 380:419–429

    Article  CAS  Google Scholar 

  30. Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M (2008) Informatics and computational strategies for the study of lipids. Mol Biosyst 4:121–127

    Article  CAS  Google Scholar 

  31. Balgoma D, Montero O, Balboa MA, Balsinde J (2010) Lipidomic approaches to the study of phospholipase A2-regulated phospholipid fatty acid incorporation and remodeling. Biochimica 92:645–650

    Article  CAS  Google Scholar 

  32. Postle AD, Wilton DC, Hunt AN, Attard GS (2007) Probing phospholipid dynamics by electrospray ionisation mass spectrometry. Prog Lipid Res 46:200–224

    Article  CAS  Google Scholar 

  33. Maréchal E, Riou M, Kerboeuf D, Beugnet F, Chaminade P, Loiseau PM (2011) Membrane lipidomics for the discovery of new antiparasitic drug targets. Trends Parasitol. doi:10.1016/j.pt.2011.07.002

  34. Milne S, Ivanova P, Forrester J, Alex Brown H (2006) Lipidomics: an analysis of cellular lipids by ESI-MS. Methods 39:92–103

    Article  CAS  Google Scholar 

  35. Sedmak JJ, Grossberg SE (1977) A rapid, sensitive and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552

    Article  CAS  Google Scholar 

  36. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  37. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. BMC Bioinformatics 22:634–636

    CAS  Google Scholar 

  38. Wold S, Antti H, Lindgren F, Öhman J (1998) Orthogonal signal correction of near-infrared spectra. Chemom Intell Lab Syst 44:175–185

    Article  CAS  Google Scholar 

  39. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S (2006) Multi- and megavariate data analysis part I: basic principles and applications. Umetrics, Umea, Sweden, pp 267–296

    Google Scholar 

  40. Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, Gottfries J, Moritz T, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80:115–122

    Article  CAS  Google Scholar 

  41. Hsu F, Turk J (2009) Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B Anal Technol Biomed Life Sci 877:2673–2695

    Article  CAS  Google Scholar 

  42. Zheng L, T’Kindt R, Decuypere S, Freyend SJV, Coombs GH, Watson DG (2010) Profiling of lipids in Leishmania donovani using hydrophilic interaction chromatography in combination with Fourier transform mass spectrometry. Rapid Commun Mass Spectrom 24:2074–2082

    Article  CAS  Google Scholar 

  43. T’Kindt R, Scheltema RA, Jankevics A, Brunker K, RIjal S, Dujardin JC, Breitling R, Watson DG, Coombs GH, Decuypere S (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis 4(11):e904

    Article  Google Scholar 

  44. Hsu F, Turk J, Zhang K, Beverley SM (2007) Characterization of inositol phosphorylceramides from Leishmania major by tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 18:1591–1604

    Article  CAS  Google Scholar 

  45. Dorlo TPC, Hillebrand MJX, Rosing H, Eggelte TA, de Vries PJ, Beijnen JH (2008) Development and validation of a quantitative assay for the measurement of miltefosine in human plasma by liquid chromatography–tandem mass spectrometry. J Chromatogr B 865:55–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Françoise Huteau and Sandrine Cojean are acknowledged for their kindly technical assistance in L. donovani cultures. Cynthia Mongongu (Analysis Department of the French Agency for Doping Control) is acknowledged for her technical support on fragmentation studies. This work was supported by The ALBAN Program of European Union Program of High Level Scholarships for Latin America through scholarship No.E04D044940CL; and by MECESUP Project UCO 0202 of Ministry of Education and University of Concepción, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Libong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbert, L., Ramos, R.G., Libong, D. et al. Identification of phospholipid species affected by miltefosine action in Leishmania donovani cultures using LC-ELSD, LC-ESI/MS, and multivariate data analysis. Anal Bioanal Chem 402, 1169–1182 (2012). https://doi.org/10.1007/s00216-011-5520-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5520-3

Keywords

Navigation