Skip to main content
Log in

On the mechanism of extractive electrospray ionization (EESI) in the dual-spray configuration

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Dual-spray extractive electrospray ionization (EESI) mass spectrometry as a versatile analytical technique has attracted much interest due to its advantages over conventional electrospray ionization (ESI). The crucial difference between EESI and ESI is that in the EESI process, the analytes are introduced in nebulized form via a neutral spray and ionized by collisions with the charged droplets from an ESI source formed by spraying pure solvent. However, the mechanism of the droplet–droplet interactions in the EESI process is still not well understood. For example, it is unclear which type of droplet–droplet interaction is dominant: bounce, coalescence, disruption, or fragmentation? In this work, droplet–droplet interaction was investigated in detail based on a theoretical model. Phase Doppler anemometry (PDA) was employed to investigate the droplet behavior in the EESI plume and provide the experimental data (droplet size and velocity) necessary for theoretical analysis. Furthermore, numerical simulations were performed to clarify the influence of the sheath gas flow on the EESI process. No coalescence between the droplets in the ESI spray and the droplets in the sample spray was observed using various geometries and sample flow rates. Theoretical analysis, together with the PDA results, suggests that droplet fragmentation may be the dominant type of droplet–droplet interaction in the EESI. The interaction time between the ESI droplet and the sample droplet was estimated to be <5 μs. This work gives a clear picture of droplet–droplet interactions in the dual-spray EESI process and detailed information for the optimization of this method for future applications that require higher sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen HW, Venter A, Cooks RG (2006) Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun 19:2042–2044

    Article  Google Scholar 

  2. Marquez CA, Wang HY, Fabbretti F, Metzger JO (2008) Electron-transfer-catalyzed dimerization of trans-anethole: detection of the distonic tetramethylene radical cation intermediate by extractive electrospray iIonization mass spectrometry. J Am Chem Soc 130(51):17208–17209

    Article  CAS  Google Scholar 

  3. Chen HW, Yang SP, Li M, Hu B, Li JQ, Wang J (2010) Sensitive detection of native proteins using extractive electrospray ionization mass spectrometry. Angew Chem-Int Edit 49(17):3053–3056

    Article  CAS  Google Scholar 

  4. Luo MB, Hu B, Zhang X, Peng DF, Chen HW, Zhang LL, Huan YF (2010) Extractive electrospray ionization mass spectrometry for sensitive detection of uranyl species in natural water samples. Anal Chem 82(1):282–289

    Article  CAS  Google Scholar 

  5. Gu HW, Chen HW, Pan ZZ, Jackson AU, Talaty N, Xi BW, Kissinger C, Duda C, Mann D, Raftery D, Cooks RG (2007) Monitoring diet effects via biofluids and their implications for metabolomics studies. Anal Chem 79(1):89–97

    Article  CAS  Google Scholar 

  6. Miao ZX, Chen H (2009) Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J Am Soc Mass Spectrom 20(1):10–19

    Article  CAS  Google Scholar 

  7. Iribarne JV, Thomson BA (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64(6):2287–2294

    Article  CAS  Google Scholar 

  8. Dole M, Mack LL, Hines RL (1968) Molecular beams of macroions. J Chem Phys 49(5):2240–2249

    Article  CAS  Google Scholar 

  9. Law WS, Wang R, Hu B, Berchtold C, Meier L, Chen HW, Zenobi R (2010) On the mechanism of extractive electrospray ionization. Anal Chem 82(11):4494–4500

    Article  CAS  Google Scholar 

  10. Ding JH, Yang SP, Liang DP, Chen HW, Wu ZZ, Zhang LL, Ren YL (2009) Development of extractive electrospray ionization ion trap mass spectrometry for in vivo breath analysis. Analyst 134(10):2040–2050

    Article  CAS  Google Scholar 

  11. Gamez G, Zhu LA, Disko A, Chen HW, Azov V, Chingin K, Kramer G, Zenobi R (2011) Real-time, in vivo monitoring and pharmacokinetics of valproic acid via a novel biomarker in exhaled breath. Chem Commun 47(17):4884–4886

    Article  CAS  Google Scholar 

  12. Zhu L, Gamez G, Chen HW, Chingin K, Zenobi R (2009) Rapid detection of melamine in untreated milk and wheat gluten by ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS). Chem Commun 5:559–561

    Article  Google Scholar 

  13. Yang SP, Ding JH, Zheng J, Hu B, Li JQ, Chen HW, Zhou ZQ, Qiao XL (2009) Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal Chem 81(7):2426–2436

    Article  CAS  Google Scholar 

  14. Law WS, Chen HW, Ding JH, Yang SP, Zhu L, Gamez G, Chingin K, Ren YL, Zenobi R (2009) Rapid characterization of complex viscous liquids at the molecular level. Angew Chem-Int Edit 48(44):8277–8280

    Article  CAS  Google Scholar 

  15. Ding JH, Gu HW, Yang SP, Li M, Li JQ, Chen HW (2009) Selective detection of eiethylene glycol in toothpaste products using neutral desorption reactive extractive electrospray ionization tandem mass spectrometry. Anal Chem 81(20):8632–8638

    Article  CAS  Google Scholar 

  16. Law WS, Chen HW, Balabin R, Berchtold C, Meier L, Zenobi R (2010) Rapid fingerprinting and classification of extra virgin olive oil by microjet sampling and extractive electrospray ionization mass spectrometry. Analyst 135(4):773–778

    Article  CAS  Google Scholar 

  17. Orme M (1997) Experiments on droplet collisions, bounce, coalescence and disruption. Prog Energy Combust Sci 23(1):65–79

    Article  CAS  Google Scholar 

  18. Gao TC, Chen RH, Pu JY, Lin TH (2005) Collision between an ethanol drop and a water drop. Exp Fluids 38(6):731–738

    Article  CAS  Google Scholar 

  19. Gomez A, Tang KQ (1994) Charge and fission of droplets in electrostatic sprays. Phys Fluids 6(1):404–414

    Article  CAS  Google Scholar 

  20. Tang K, Gomez A (1994) On the structure of an electrostatic spray of monodisperse droplets. Phys Fluids 6(7):2317–2332

    Article  Google Scholar 

  21. Olumee Z, Callahan JH, Vertes A (1998) Droplet dynamics changes in electrostatic sprays of methanol–water mixtures. J Phys Chem A 102(46):9154–9160

    Article  CAS  Google Scholar 

  22. Venter A, Sojka PE, Cooks RG (2006) Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal Chem 78(24):8549–8555

    Article  CAS  Google Scholar 

  23. Heine MC (2007) Particle dynamics at high aerosol concentrations and production rates. ETHZ, Zurich

    Google Scholar 

  24. Heine MC, Pratsinis SE (2005) Droplet and particle dynamics during flame spray synthesis of nanoparticles. Ind Eng Chem Res 44(16):6222–6232

    Article  CAS  Google Scholar 

  25. Hindes WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York

    Google Scholar 

  26. Hardalupas Y, Liu CH, Whitelaw JH (1994) Experiments with disk stabilized kerosene-fuelled flames. Combust Sci Technol 97(1–3):157–191

    Article  CAS  Google Scholar 

  27. Issac K, Missoum A, Drallmeier J, Johnston A (1994) Atomization experiments in a coaxial coflowing Mach 1.5 flow. AIAA J 32(8):1640–1646

    Article  CAS  Google Scholar 

  28. Mackay GDM, Mason SG (1963) The gravity approach and coalescence of fluid drops at liquid interfaces. CanJChemEng 41:203–212

    CAS  Google Scholar 

  29. Dizechi M, Marschall E (1982) Viscosity of some binary and ternary liquid mixtures. J Chem Eng Data 27(3):358–363

    Article  CAS  Google Scholar 

  30. Vazquez G, Alvarez E, Navaza JM (1995) Surface tension of alcohol + water from 20 to 50°C. J Chem Eng Data 40(3):611–614

    Article  CAS  Google Scholar 

  31. Cheng CS, Li YQ, Zhao LF (2009) Investigation of improving the model for binary collision regimes of hydrocarbon droplets. In: Wenbin H, Xin L (eds) 2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009, IEEE

  32. Gunn R (1965) Collision characteristics of freely falling water drops. Science 150(3697):695–701

    Article  CAS  Google Scholar 

  33. Low TB, List R (1982) Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J Atmos Sci 39(7):1591–1606

    Article  Google Scholar 

  34. Braziers PR, Latham J, Jennings SG (1972) The interaction of falling water drops: coalescence. Proc R Soc Lond A 326(1566):393–408

    Article  Google Scholar 

  35. Gu HW, Hu B, Li JQ, Yang SP, Han J, Chen HW (2010) Rapid analysis of aerosol drugs using nano extractive electrospray ionization tandem mass spectrometry. Analyst 135(6):1259–1267

    Article  CAS  Google Scholar 

  36. Peng Z, Law CK (2011) An analysis of head-on droplet collision with large deformation in gaseous medium. Phys Fluids 23(4):042102

    Article  Google Scholar 

  37. Lamb H (ed) (1932) Hydrodynamics, 6th edn. Dover, New York

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Lukas Meier, Dr. Thomas Schmid, and Dr. Waisiang Law for their kind help and nice discussion. This project was supported by the Swiss National Science Foundation (grant no. 200020-124663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Zenobi.

Additional information

Published in the ANAKON special issue with guest editors P. Dittrich, D. Günther, G. Hopfgartner, and R. Zenobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Gröhn, A.J., Zhu, L. et al. On the mechanism of extractive electrospray ionization (EESI) in the dual-spray configuration. Anal Bioanal Chem 402, 2633–2643 (2012). https://doi.org/10.1007/s00216-011-5471-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5471-8

Keywords

Navigation