Skip to main content
Log in

Reflectometric interference spectroscopy (RIfS) as a new tool to measure in the complex matrix milk at low analyte concentration

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Measurements in complex matrices like milk still present a challenge in biosensor development. This is especially important when using a label-free detection method or when measuring low analyte concentrations. The direct optical method reflectometric interference spectroscopy (RIfS) was used for investigating matrix effects in immunoassay development. Furthermore, approaches to reduce these effects have been established. As a model system, the hormone testosterone has been chosen because this immunoassay has been well characterized in buffer. In a first step, the immunoassay for the detection of testosterone in buffer was improved beyond former published results. Therefore, the sensor surface was optimized, resulting in a fivefold lower limit of detection (70.2 ng L−1) and limit of quantification (130.0 ng L−1). Additionally, the assay time could be reduced to 15 min. Consequently, we used this improved assay to investigate matrix effects of whole pasteurized bovine milk. To minimize these effects, the surface chemistry was adapted and a suitable evaluation method was established, reducing the effects of Tyndall scattering and nonspecific binding to the sensor surface. These improvements allow for very reliable quantitative measurements in milk. The assay developed required no sample pretreatment and allowed for the regeneration of the sensor surface so that calibration could be performed on one chip. The calibration in milk (3.5% fat) resulted in a limit of detection of 94.4 ng L−1 and a limit of quantification of 229.3 ng L−1. Furthermore, recovery rates between 70% and 120% could be obtained. Thus, for the first time, an analyte in the matrix milk was successfully quantified with RIfS at low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Turrio-Baldassarri L, di Domenico A, Fulgenzi AR, Iacovella N, La Rocca C (1993) Sci Total Environ 134(2):1439–1451

    Google Scholar 

  2. La Rocca C, Mantovani A (2006) Ann Ist Super Sanita 42(4):410–416

    Google Scholar 

  3. Morozova VS, Levashova AI, Eremin SA (2005) Anal Chem 60(3):202–217

    Article  CAS  Google Scholar 

  4. Tschmelak J, Proll G, Riedt J, Kaiser J, Kraemmer P, Barzaga L, Wilkinson JS, Hua P, Hole JP, Nudd R, Jackson M, Abuknesha R, Barcelo D, Rodriguez-Mozaz S, de Alda MJL, Sacher F, Stien J, Slobodnik J, Oswald P, Kozmenko H, Korenkova E, Tothova L, Krascsenits Z, Gauglitz G (2005) Biosens Bioelectron 20(8):1509–1519

    Article  CAS  Google Scholar 

  5. Brecht A, Gauglitz G (1997) Anal Chim Acta 347:219–233

    Article  CAS  Google Scholar 

  6. Kudlak B, Namiesnik J (2011) Curr Anal Chem 7(2):157–175

    CAS  Google Scholar 

  7. Shore LS, Gurevitz M, Shemesh M (1993) Bull Environ Contam Toxicol 51:361–366

    Article  CAS  Google Scholar 

  8. Kozlowska-Tylingo K, Namiesnik J, Gorecki T (2010) Crit Rev Anal Chem 40(3):194–201

    Article  CAS  Google Scholar 

  9. Krska R, Josephs R (2001) Fresenius J Anal Chem 369:469–476

    Article  CAS  Google Scholar 

  10. Denli M, Perez JF (2010) Toxins 2:1065–1077

    Article  CAS  Google Scholar 

  11. Akhtar MH, Abdel-Aal ES (2006) Curr Pharm Analysis 2(2):183–193

    Article  CAS  Google Scholar 

  12. Balaban N, Rasooly A (2000) Int J Food Microbiol 61(1):1–10

    Article  CAS  Google Scholar 

  13. Argudín MA, Mendoza MC, Rodicio MR (2010) Toxins 2:1751–1773

    Article  Google Scholar 

  14. Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2006) Anal Bioanal Chem 386:1025–1041

    Article  CAS  Google Scholar 

  15. Castillo J, Gáspár S, Leth S, Niculescu M, Mortari A, Bontidean I, Soukharev V, Dorneanu SA, Ryabov AD, Csöregi E (2004) Sensor Actuator B 102:179–194

    Article  Google Scholar 

  16. Mello LD, Kubota LT (2002) Food Chem 77:237–256

    Article  CAS  Google Scholar 

  17. Fodey TL, Thompson CS, Traynor IM, Haughey SA, Kennedy DG, Crooks SRH (2011) Anal Chem 83(12):5012–5016

    Article  CAS  Google Scholar 

  18. Adekunte AO, Tiwari BK, O’Donnell CP (2010) Chemosphere 81(4):509–516

    Article  CAS  Google Scholar 

  19. Normanno G, La Salandra G, Dambrosio A, Quaglia NC, Corrente M, Parisi A, Santagada G, Firinu A, Crisetti E, Celano GV (2007) Int J Food Microbiol 115(3):290–296

    Article  CAS  Google Scholar 

  20. Petro EML, Covaci A, Leroy JLM, Dirtu AC, De Coen W, Bols PEJ (2010) Sci Total Environ 408(22):5423–5428

    Article  CAS  Google Scholar 

  21. Oubiña A, Gascón J, Barceló D (1997) Anal Chim Acta 347:121–130

    Article  Google Scholar 

  22. Mazumdar SD, Hartmann M, Kaempfer P, Keusgen M (2007) Biosens Bioelectron 22(9–10):2040–2046

    Article  CAS  Google Scholar 

  23. Fernandez F, Pinacho DG, Sanchez-Baeza MMP (2011) J Agric Food Chem 59(9):5036–5043

    Article  CAS  Google Scholar 

  24. Mitchell JS, Lowe TE (2009) Biosens Bioelectron 24:2177–2183

    Article  CAS  Google Scholar 

  25. Serafin V, Eguílaz M, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2010) Electroanalysis 23(1):169–176

    Article  Google Scholar 

  26. Liang KZ, Qi JS, Mu WJ, Chen ZG (2008) J Biochem Biophys Meth 70:1156–1162

    Article  CAS  Google Scholar 

  27. Conneely G, Aherne M, Lu H, Guilbault GG (2007) Anal Chim Acta 583:153–160

    Article  CAS  Google Scholar 

  28. Tschmelak J, Kumpf M, Käppel N, Proll G, Gauglitz G (2006) Talanta 69:343–350

    Article  CAS  Google Scholar 

  29. Albrecht C, Kaeppel N, Gauglitz G (2008) Anal Bioanal Chem 391:1845–1852

    Article  CAS  Google Scholar 

  30. Gauglitz G (2010) Anal Bioanal Chem 398(6):2363–2372

    Article  CAS  Google Scholar 

  31. Brecht A, Gauglitz G, Nahm W (1992) Analusis 20:135–140

    CAS  Google Scholar 

  32. Schmitt HM, Brecht A, Piehler J, Gauglitz G (1997) Biosens Bioelectron 12:809–816

    Article  CAS  Google Scholar 

  33. Piehler J, Brecht A, Geckeler KE, Gauglitz G (1996) Biosens Bioelectron 11(6–7):579–590

    Article  CAS  Google Scholar 

  34. Mehne J, Markovic G, Pröll F, Schweizer N, Zorn S, Schreiber F, Gauglitz G (2008) Anal Bioanal Chem 391:1783–1791

    Article  CAS  Google Scholar 

  35. Glaser RW (1993) Anal Biochem 213(1):152–161

    Article  CAS  Google Scholar 

  36. Kröger K, Jung A, Reder S, Gauglitz G (2002) Anal Chim Acta 469(1):37–48

    Article  Google Scholar 

  37. Mehlmann M, Garvin AM, Steinwand M, Gauglitz G (2005) Anal Bioanal Chem 382(8):1942–1948

    Article  CAS  Google Scholar 

  38. Dudley RA, Edwards P, Ekins RP, Finney DJ, McKenzie IG, Raab GM, Rodbard D, Rodgers RP (1985) Clin Chem 31:1264–1271

    CAS  Google Scholar 

  39. Inczedy J, Lengyel T, Ure AM (1998) Compendium of analytical nomenclature. The orange book, 3rd edn. Blackwell Science, Oxford. ISBN 0-632-05127-2

  40. Käppel N (2007) Immunoassay-Optimierung für verschiedene Probenmatrices. Rhombos, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Rau.

Additional information

Published in the 10th Anniversary Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, S., Gauglitz, G. Reflectometric interference spectroscopy (RIfS) as a new tool to measure in the complex matrix milk at low analyte concentration. Anal Bioanal Chem 402, 529–536 (2012). https://doi.org/10.1007/s00216-011-5470-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5470-9

Keywords

Navigation