Skip to main content
Log in

Application of direct thermal desorption gas chromatography time-of-flight mass spectrometry for determination of nonpolar organics in low-volume samples from ambient particulate matter and personal samplers

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Direct thermal desorption and in-situ derivatization thermal desorption methods in conjunction with gas chromatography time-of-flight mass spectrometry have been characterized and evaluated for analysis of trace components from filters loaded with ambient particulate matter (PM). The limits of quantification were in the range of 7–24 pg for n-alkanes, 20 pg for hopanes, and 4–22 pg for polycyclic aromatic hydrocarbons (PAH). The limit of quantification was defined as the minimum amount of substance that conforms to the minimum distinguishable signal plus 9 times the standard deviation of this background signal from PM-loaded filters. The method has been successfully applied to low-volume samples from ambient PM collected with stationary and personal samplers. Stationary samples were collected in winter 2008 and 2010 in Augsburg, Germany. Sample aliquots of 0.2-0.3 m³ from stationary sampling were analyzed. High diurnal variation in concentration and source contribution was found especially during periods with low wind speed and low mixing layer height. High contributions of solid fuel combustion (wood and coal) were found in evening and nighttime samples, leading to peak PAH concentrations at midnight more than 10 times higher than at noon. Finally, the method was applied to samples collected by means of a personal sampler, i.e. a micro aethalometer, in Xi’an, China. Quantitative data on n-alkanes, hopanes, and PAH were obtained from sample volumes of 17 and 24 l. The impact of different sources such as vehicular and biogenic emissions could be distinguished.

Left side: “personal sampling” with Micro Aethalometer (microAeth® Model AE51, Magee Scientific, USA), right: section of the chromatograms from low volume personal samples showing mass trace m/z= 276.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hall PA, Watson AFR, Garner GV, Hall K, Smith S, Waterman D, Horsfield B (1999) Sci Total Environ 235:269–276

    Article  CAS  Google Scholar 

  2. Falkovich AH, Rudich Y (2001) Environ Sci Technol 35:2326–2333

    Article  CAS  Google Scholar 

  3. Hays MD, Smith ND, Kinsey J, Dong YJ, Kariher P (2003) J Aerosol Sci 34:1061–1084

    Article  CAS  Google Scholar 

  4. Ding LC, Ke F, Wang DKW, Dann T, Austin CC (2009) Atmos Environ 43:4894–4902

    Article  CAS  Google Scholar 

  5. Gil-Molto J, Varea M, Galindo N, Crespo J (2009) J Chromatogr A 1216:1285–1289

    Article  CAS  Google Scholar 

  6. van Drooge BL, Nikolova I, Ballesta PP (2009) J Chromatogr A 1216:4030–4039

    Article  Google Scholar 

  7. Bates M, Bruno P, Caputi M, Caselli M, de Gennaro G, Tutino M (2008) Atmos Environ 42:6144–6151

    Article  CAS  Google Scholar 

  8. Ho SSH, Yu JZ (2004) J Chromatogr A 1059:121–129

    Article  CAS  Google Scholar 

  9. Schnelle-Kreis J, Welthagen W, Sklorz M, Zimmermann R (2005) J Sep Sci 28:1648–1657

    Article  CAS  Google Scholar 

  10. Chow JC (2007) Zhen Yu J, Watson JG, Ho SSH, Bohannan TL, Hays MD, Fung KK. J Environ Sci Health Part A 42:1521–1541

    Article  CAS  Google Scholar 

  11. Ma Y, Hays MD, Geron CD, Walker JT, Gichuru MJG (2010) Atmos Chem Phys 10:4331–4341

    Article  Google Scholar 

  12. Beiner K, Plewka A, Haferkorn S, Iinuma Y, Engewald W, Herrmann H (2009) J Chromatogr A 1216:6642–6650

    Article  CAS  Google Scholar 

  13. Orasche J, Schnelle-Kreis J, Abbaszade G, Zimmermann R (2011) Atmos Chem Phys 11:8977–8993

    Article  Google Scholar 

  14. Schnelle-Kreis E, Sklorz M, Peters A, Cyrys J, Zimmermann R (2005) Atmos Environ 39:7702–7714

    CAS  Google Scholar 

  15. Schnelle-Kreis J, Sklorz M, Orasche J, Stolzel M, Peters A, Zimmermann R (2007) Environ Sci Technol 41:3821–3828

    Article  CAS  Google Scholar 

  16. Williams BJ, Goldstein AH, Kreisberg NM, Hering SV (2006) Aerosol Sci Technol 40:627–638

    Article  CAS  Google Scholar 

  17. Goldstein AH, Worton DR, Williams BJ, Hering SV, Kreisberg NM, Panic O, Górecki T (2008) J Chromatogr A 1186:340–347

    Article  CAS  Google Scholar 

  18. Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1997) Environ Sci Technol 31:2731–2737

    Article  CAS  Google Scholar 

  19. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  20. Sakurai H, Tobias HJ, Park K, Zarling D, Docherty KS, Kittelson DB, McMurry PH, Ziemann PJ (2003) Atmos Environ 37:1199–1210

    Article  CAS  Google Scholar 

  21. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Environ Sci Technol 27:2700–2711

    Article  CAS  Google Scholar 

  22. Simoneit BRT (2002) Appl Geochem 17:129–162

    Article  CAS  Google Scholar 

  23. Oros DR, Simoneit BRT (2001) Appl Geochem 16:1513–1544

    Article  CAS  Google Scholar 

  24. Oros DR, Simoneit BRT (2001) Appl Geochem 16:1545–1565

    Article  CAS  Google Scholar 

  25. Oros DR, Simoneit BRT (2000) Fuel 79:515–536

    Article  CAS  Google Scholar 

  26. Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1993) Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  27. Farrimond P, Bevan JC, Bishop AN (1996) Org Geochem 25:149–164

    Article  CAS  Google Scholar 

  28. Volkman JK (2005) Org Geochem 36:139–159

    Article  CAS  Google Scholar 

  29. El-Gayar MS, Abdelfattah QE, Barakat AO (2002) Pet Sci Technol 20:1057–1070

    Article  CAS  Google Scholar 

  30. Oros DR, Simoneit BRT (2000) Fuel 79:515–536

    Article  CAS  Google Scholar 

  31. Bignal KL, Langridge S, Zhou JL (2008) Atmos Environ 42:8863–8871

    Article  CAS  Google Scholar 

  32. Boman C, Pettersson E, Westerholm R, Bostrom D, Nordin A (2011) Energy Fuel 25:307–314

    Article  CAS  Google Scholar 

  33. Miguel AH, Kirchstetter TW, Harley RA, Hering SV (1998) Environ Sci Technol 32:450–455

    Article  CAS  Google Scholar 

  34. Pettersson E, Boman C, Westerholm R, Bostrom D, Nordin A (2011) Energy Fuel 25:315–323

    Article  CAS  Google Scholar 

  35. Fine PM, Cass GR, Simoneit BRT (2004) Environ Eng Sci 21:387–409

    Article  CAS  Google Scholar 

  36. Bari MA, Baumbach G, Kuch B, Scheffknecht G (2009) Atmos Environ 43:4722–4732

    Article  CAS  Google Scholar 

  37. Zielinska B, Sagebiel J, Arnott WP, Rogers CF, Kelly KE, Wagner DA, Lighty JS, Sarofim AF, Palmer G (2004) Environ Sci Technol 38:2557–2567

    Article  CAS  Google Scholar 

  38. Brandt C, Kunde R, Dobmeier B, Schnelle-Kreis J, Orasche J, Schmoeckel G, Diemer J, Zimmermann R, Gaderer M (2011) Atmos Environ 45:3466–3474

    Article  CAS  Google Scholar 

  39. Kraus U, Breitner S (2011) Schnelle-Kreis Jr, Cyrys J, Lanki T, Rückerl R, Schneider A, Brüske I, Gu J, Devlin R, Wichmann H-E, Zimmermann R, Peters A. Inhal Toxicol 23:431–447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schnelle-Kreis.

Additional information

Published in the special issue Aerosol Analysis with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnelle-Kreis, J., Orasche, J., Abbaszade, G. et al. Application of direct thermal desorption gas chromatography time-of-flight mass spectrometry for determination of nonpolar organics in low-volume samples from ambient particulate matter and personal samplers. Anal Bioanal Chem 401, 3083–3094 (2011). https://doi.org/10.1007/s00216-011-5429-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5429-x

Keywords

Navigation