Skip to main content
Log in

Chitosan-coated polystyrene microplate for covalent immobilization of enzyme

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microplates made of polystyrene have been widely used for immunoassays. Protein molecules that have been immobilized on a hydrophobic polystyrene microplate by passive adsorption lose their activity and suffer considerable denaturation. A new chitosan-coated microplate suitable for the covalent immobilization of enzymes has been developed. The primary amino groups of chitosan were exploited for this covalent coupling of proteins. The optical transmittance of the chitosan-coated microplate, at wavelengths of 400–800 nm, was estimated to be suitable for its application in chromogenic reaction-based bioassays. The immobilization efficiency of the chitosan-coated microplate was demonstrated to be far superior to that of a conventional microplate when tested using acetylcholinesterase (AChE) and β-glucosidase as model biomolecules, and the chitosan-coated microplate may thus have potential applications in biosensing and bioreactor systems.

Comparison of the optical transmittances of chitosan-coated microplates in the wavelength range monitored in chromogenic reactions employed for immunoassays with the transmittance of a conventional polystyrene microplate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ansari AA, Hattikudur NS, Joshi SR, Medeira MA (1985) J Immunol Methods 84:117–124

    Article  CAS  Google Scholar 

  2. Niveleau A, Bruno C, Drouet E, Brebant R, Sergeant A, Troalen F (1995) J Immunol Methods 182:227–234

    Article  CAS  Google Scholar 

  3. Butler JE, Spradling JE, Suter M, Dierks SE, Heyermann H, Peterman JH (1986) Mol Immunol 23:971–982

    Article  CAS  Google Scholar 

  4. Butler JE (2000) Methods 22:4–23

    Article  CAS  Google Scholar 

  5. Butler JE, Ni L, Brown WR, Joshi KS, Chang J, Rosenberg B, Voss EW Jr (1993) Mol Immunol 30:1165–1175

    Article  CAS  Google Scholar 

  6. Suzuki N, Quesenberry MS, Wang JK, Lee RT, Kobayashi K, Lee YC (1997) Anal Biochem 247:412–416

    Article  CAS  Google Scholar 

  7. Jeon BJ, Kim MH, Pyun JC (2010) J Immunol Methods 353:44–48

    Article  CAS  Google Scholar 

  8. Kaur J, Boro RC, Wangoo N, Singh KR, Suri CR (2008) Anal Chim Acta 607:92–99

    Article  CAS  Google Scholar 

  9. Gancarz I, Bryjak J, Pozniak G, Tylus W (2003) Eur Polym J 39:2217–2224

    Article  CAS  Google Scholar 

  10. Zammatteo N, Girardeaux C, Delforge D, Pireaux JJ, Remacle J (1996) Anal Biochem 236:85–94

    Article  CAS  Google Scholar 

  11. Hobbs RN, Lea DJ, Ward DJ (1983) J Immunol Methods 65:235–243

    Article  CAS  Google Scholar 

  12. Chin NW, Lanks KW (1977) Anal Biochem 83:709–719

    Article  CAS  Google Scholar 

  13. Varga JM, Fritsch P (1990) FASEB J 4:2671–2677

    CAS  Google Scholar 

  14. France RM, Short RD (1994) Polym Degrad Stab 45:339–346

    Article  CAS  Google Scholar 

  15. Ye P, Xu ZK, Che AF, Wu J, Seta P (2005) Biomaterials 26:6394–6403

    Article  CAS  Google Scholar 

  16. Xu H, Dai H, Chen G (2010) Talanta 81:334–338

    Article  CAS  Google Scholar 

  17. Tan Y, Deng W, Ge B, Xie Q, Huang J, Yao S (2009) Biosens Bioelectron 24:2225–2231

    Article  CAS  Google Scholar 

  18. Zhang Y, Zhang Y, Jiang J, Li L, Yu C, Hei T (2011) Appl Surf Sci 257:2712–2716

    Article  CAS  Google Scholar 

  19. Koev ST, Dykstra PH, Luo X, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2010) Lab Chip 10:3026–3042

    Article  CAS  Google Scholar 

  20. Duceppe N, Tabrizian M (2010) Expert Opin Drug Deliv 7:1191–1207

    Article  CAS  Google Scholar 

  21. Masotti A, Ortaggi G (2009) Mini Rev Med Chem 9:463–469

    Article  CAS  Google Scholar 

  22. Petrulyte S (2008) Dan Med Bull 55:72–77

    CAS  Google Scholar 

  23. El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Mar Drugs 8:968–987

    Article  CAS  Google Scholar 

  24. Friedman M, Juneja VK (2010) J Food Prot 73:1737–1761

    CAS  Google Scholar 

  25. Pavinatto FJ, Caseli L, Oliveira ON (2010) Biomacromolecules 11:1897–1908

    Article  CAS  Google Scholar 

  26. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Int J Biol Macromol 47:1–4

    Article  CAS  Google Scholar 

  27. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Biotechnol Adv 26:1–21

    Article  CAS  Google Scholar 

  28. Schwartz PJ, Blundon JA, Adler EM (2007) Sci STKE 394:tr2.

  29. Mendes AA, de Castro HF, de S Rodrigues D, Adriano WS, Tardioli PW, Mammarella EJ, de C Giordano R, de L C Giordano R (2011) J Ind Microbiol Biotechnol 38:1055–1066

  30. Yi H, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF (2005) Biomacromolecules 6:2881–2894

    Article  CAS  Google Scholar 

  31. Wang G, Xu JJ, Ye LH, Zhu JJ, Chen HY (2002) Bioelectrochemistry 57:33–38

    Article  CAS  Google Scholar 

  32. Du D, Huang X, Cai J, Zhang A, Ding J, Chen S (2007) Anal Bioanal Chem 387:1059–1065

    Article  CAS  Google Scholar 

  33. Yi H, Wu LQ, Sumner JJ, Gillespie JB, Payne GF, Bentley WE (2003) Biotechnol Bioeng 83:646–652

    Article  CAS  Google Scholar 

  34. Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M (2010) Biomaterials 31:404–412

    Article  CAS  Google Scholar 

  35. Zheng X, Shen G, Yang X, Liu W (2007) Cancer Res 67:3691–3697

    Article  CAS  Google Scholar 

  36. Kievit FM, Florczyk SJ, Leung MC, Veiseh O, Park JO, Disis ML, Zhang M (2010) Biomaterials 31:5903–5910

    Article  CAS  Google Scholar 

  37. Josephy PD, Eling T, Mason RP (1982) J Biol Chem 257:3669–3675

    CAS  Google Scholar 

  38. Srere PA, Uyeda K (1976) Methods Enzymol 44:11–19

    Article  CAS  Google Scholar 

  39. Kang Y, Feng KJ, Chen JW, Jiang JH, Shen GL, Yu RQ (2008) Bioelectrochemistry 73:76–81

    Article  CAS  Google Scholar 

  40. Yi H, Wu LQ, Ghodssi R, Rubloff GW, Payne GF, Bentley WE (2004) Anal Chem 76:365–372

    Article  CAS  Google Scholar 

  41. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  42. Graf BW, Boppart SA (2010) Methods Mol Biol 591:211–227

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 30600494) and the Fundamental Research Fund for the Central Universities (no. GK200902010)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, L., Yu, C. et al. Chitosan-coated polystyrene microplate for covalent immobilization of enzyme. Anal Bioanal Chem 401, 2311–2317 (2011). https://doi.org/10.1007/s00216-011-5306-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5306-7

Keywords

Navigation