Skip to main content
Log in

A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns (“fingerprints”) can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05–100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.

Pattern recognition of ten sweeteners by LDA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang DJ, Chen B (2009) Simultaneous determination of nonnutritive sweeteners in foods by HPLC/ESI-MS. J Agric Food Chem 57(8):3022–3027

    Article  CAS  Google Scholar 

  2. Buchgraber M, Wasik A (2009) Determination of nine intense sweeteners in foodstuffs by high-performance liquid chromatography and evaporative light-scattering detection: interlaboratory study. J AOAC Intl 92(1):208–222

    CAS  Google Scholar 

  3. Wasik A, McCourt J, Buchgraber M (2007) Simultaneous determination of nine intense sweeteners in foodstuffs by high performance liquid chromatography and evaporative light scattering detection—development and single-laboratory validation. J Chromatogr A 1157(1–2):187–196

    Article  CAS  Google Scholar 

  4. Chen QC, Mou SF, Liu KN, Yang ZY, Ni ZM (1997) Separation and determination of four artificial sweeteners and citric acid by high-performance anion-exchange chromatography. J Chromatogr A 771(1–2):135–143

    CAS  Google Scholar 

  5. Chen QC, Wang J (2001) Simultaneous determination of artificial sweeteners, preservatives, caffeine, theobromine and theophylline in food and pharmaceutical preparations by ion chromatography. J Chromatogr A 937(1–2):57–64

    Article  CAS  Google Scholar 

  6. Zhu Y, Guo YY, Ye ML, James FS (2005) Separation and simultaneous determination of four artificial sweeteners in food and beverages by ion chromatography. J Chromatogr A 1085(1):143–146

    Article  CAS  Google Scholar 

  7. Chou SF, Chen JH, Chou LW, Fan JJ, Chen CY (1995) Determination of the sweetener aspartame with an enzyme sensor. J Food Drug Anal 3(2):121–126

    CAS  Google Scholar 

  8. Odaci D, Timur S, Telefoncu A (2004) Carboxyl esterase-alcohol oxidase based biosensor for the aspartame determination. Food Chem 84:493–496

    Article  CAS  Google Scholar 

  9. Arvinte A, Sesay A-M (2011) Carbohydrates electrocatalytic oxidation using CNT-NiCo-oxide modified electrodes. Talanta 84(1):180–186

    Article  CAS  Google Scholar 

  10. Li C, Yi Su, Zhang S, Lv X, Xia H, Wang Y (2010) An improved sensitivity nonenzymatic glucose biosensor based on a Cu x O modified electrode. Biosens Bioelectron 26(2):903–907

    Article  Google Scholar 

  11. Ammam M, Fransaer J (2010) Two-enzyme lactose biosensor based on β-galactosidase and glucose oxidase deposited by AC-electrophoresis: characteristics and performance for lactose determination in milk. Sens Actuators B 148(2):583–589

    Article  Google Scholar 

  12. Chen Xiao-mei, Lin Zhi-jie, Chen De-Jun, Jia Tian-tian, Cai Zhi-min, Wang Xiao-ru, Chen X, Chen Guo-nan, Oyama M (2010) Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron 25(7):1803–1808

    Article  CAS  Google Scholar 

  13. Feng Li AB, Yan Fengb, Limin Yangb, Liang Li B, Chenfei Tangb, Bo Tanga (2011) A selective novel non-enzyme glucose amperometric biosensor based on lectin–sugar binding on thionine modified electrode. Biosens Bioelectron 26:2489–2494

    Article  Google Scholar 

  14. Nikolelis DP, Pantoulias S, Krull UJ, Zeng J (2001) Electrochemical transduction of the interactions of the sweeteners acesulfame-K, saccharin and cyclamate with bilayer lipid membranes (BLMs). Electrochim Acta 46:1025–1031

    Article  CAS  Google Scholar 

  15. Carloni J, Santini AO, Nasser ALM, Pezza HR, de Oliveira JE, Melios CB, Pezza L (2003) Potentiometric determination of saccharin in commercial artificial sweeteners using a silver electrode. Food Chem 83(2):297–301

    Article  Google Scholar 

  16. Zhang Y, He Z, Li G (2010) A novel fluorescent vesicular sensor for saccharides based on boronic acid–diol interaction. Talanta 81(1–2):591–596

    Article  CAS  Google Scholar 

  17. James TD, Shinmori H, Shinkai S (1997) Novel fluorescence sensor for “small” saccharides. Chem Commun 1:71–72

    Article  Google Scholar 

  18. Capitan-Vallvey F, Valencia MC, Nicolas EA (2004) Flow-through spectrophotometric sensor for the determination of aspartame in low-calorie and dietary products. Anal Sci 20(10):1437–1442

    Article  CAS  Google Scholar 

  19. Capitan-Vallvey LF, Valencia MC, Arana Nicolas E (2004) Flow-through spectrophotometric sensor for the determination of saccharin in low-calorie products. Food Addit Contam 21(1):32–41

    Article  CAS  Google Scholar 

  20. Capitán-Vallvey LF, Valencia MC, Arana Nicolás E, García-Jiménez JF (2006) Resolution of an intense sweetener mixture by use of a flow injection sensor with on-line solid-phase extraction. Anal Bioanal Chem 385:385–391

    Article  Google Scholar 

  21. Musto CJ, Lim SH, Suslick KS (2009) Colorimetric detection and identification of natural and artificial sweeteners. Anal Chem 81(15):6526–6533

    Article  CAS  Google Scholar 

  22. Lim SH, Musto CJ, Park E, Zhong W, Suslick KS (2008) A colorimetric sensor array for detection and identification of sugars. Org Lett 10(20):4405–4408

    Article  CAS  Google Scholar 

  23. Zhang X, Dou F, Liu H (2010) Molecular concentration sensor based on the diffraction resonance mode of gold nanowire gratin. Nanotechnology 21(33):335501–335507

    Article  Google Scholar 

  24. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100(7):2595–2626

    Article  CAS  Google Scholar 

  25. Hierlemann A, Gutierrez-Osuna R (2008) Higher-order chemical sensing. Chem Rev 108(2):563–613

    Article  CAS  Google Scholar 

  26. Lavine B, Workman J (2008) Chemometrics. Anal Chem 80(12):4519–4531

    Article  CAS  Google Scholar 

  27. Zhang C, Suslick KS (2005) A colorimetric sensor array for organics in water. J Am Chem Soc 127(33):11548–11549

    Article  CAS  Google Scholar 

  28. Yayan Wu, Na N, Zhang S, Wang X, Liu D, Zhang X (2009) Discrimination and identification of flavors with catalytic nanomaterial-based optical chemosensor array. Anal Chem 81(3):961–966

    Article  Google Scholar 

  29. Na N, Zhang S, Wang S, Zhang X (2006) A catalytic nanomaterial-based optical chemo-sensor array. J Am Chem Soc 128(45):14420–14421

    Article  CAS  Google Scholar 

  30. Kong H, Zhang S, Na N, Liu D, Zhang X (2009) Recognition of organic compounds in aqueous solutions by chemiluminescence on an array of catalytic nanoparticles. Analyst 134:2441–2446

    Article  CAS  Google Scholar 

  31. Kong H, Liu D, Zhang S, Zhang X (2011) Protein sensing and cell discrimination using a sensor array based on nanomaterial-assisted chemiluminescence. Anal Chem 83:1867–1870

    Article  CAS  Google Scholar 

  32. Sun ZY, Yuan HQ, Liu ZM, Han BX, Zhang XR (2005) A highly efficient chemical sensor material for H2S: alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater 17(24):2993–2997

    Article  CAS  Google Scholar 

  33. Zhang ZY, Xu K, Xing Z, Zhang XR (2005) A nanosized Y2O3-based catalytic chemiluminescent sensor for trimethylamine. Talanta 65(4):913–917

    Article  CAS  Google Scholar 

  34. Shi JJ, Li JJ, Zhu YF, Wei F, Zhang XR (2002) Nanosized SrCO3-based chemiluminescence sensor for ethanol. Anal Chim Acta 466(1):69–78

    Article  CAS  Google Scholar 

  35. Zhang ZY, Zhang SC, Zhang XR (2005) Recent developments and applications of chemiluminescence sensors. Anal Chim Acta 541(1–2):37–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the National Natural Science Foundation of China (no. 21027013), the National High Technology Research and Development Program of China (no. 2009AA03Z321), and the Natural Science Foundation of Chongqing Municipal Education Commission (no. KJ101309) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinrong Zhang.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, W., Kong, H., Wang, H. et al. A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners. Anal Bioanal Chem 402, 389–395 (2012). https://doi.org/10.1007/s00216-011-5305-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5305-8

Keywords

Navigation