Skip to main content
Log in

Determination of perfluorinated compounds in mollusks by matrix solid-phase dispersion and liquid chromatography–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Perfluorinated compounds (PFCs) have been used for over 40 years in different commercial and industrial applications mainly as surfactants and surface protectors and have become an important class of marine emerging pollutants. This study presents the development and validation of a new analytical method to determine the simultaneous presence of eight PFCs in different kinds of mollusks using matrix solid-phase dispersion (MSPD) followed by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Simplicity of the analytical procedure, low volume of solvent and quantity of sample required, low global price, and integration of extraction and clean-up into a single step, are the most important advantages of the developed methodology. Solvent, solid support (dispersing agent), clean-up sorbent, and their amounts were optimized by means of an experimental design. In the final method, 0.5 g of sample are dispersed with 0.2 g of diatomaceous earth and transferred into a polypropylene syringe containing 4 g of silica as clean-up sorbent. Then, analytes are eluted with 20 mL of acetonitrile. The extract is finally concentrated to a final volume of 0.5 mL in methanol, avoiding extract dryness in order to prevent evaporation losses and injected in the LC-MS/MS. The combination of this MSPD protocol with LC-MS/MS afforded detection limits from 0.05 to 0.3 ng g−1. Also, a good linearity was established for the eight PFCs in the range from limit of quantification (LOQ) to 500 ng mL−1 with R 2 > 0.9917. The recovery of the method was studied with three types of spiked mollusk and was in the 64–126% range. Moreover, a mussel sample was spiked and aged for more than 1 month and analyzed by the developed method and a reference method, ion-pair extraction, for comparison, producing both methods statistically equal concentration values. The method was finally applied to the determination of PFCs in different kinds of mollusks revealing concentrations up to 8.3 ng g−1 for perfluoroundecanoic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hradkova P, Poustka J, Hlouskova V, Pulkrabova J, Tomaniova M, Hajslova J (2010) Czech J Food Sci 28(4):333–342

    CAS  Google Scholar 

  2. Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T (2005) Mar Pollut Bull 51(8–12):658–668

    Article  CAS  Google Scholar 

  3. Nania V, Pellegrini GE, Fabrizi L, Sesta G, De Sanctis P, Lucchetti D, Di Pasquale M, Coni E (2009) Food Chem 115(3):951–957

    Article  CAS  Google Scholar 

  4. de Voogt P, Saez M (2006) Trends Anal Chem 25(4):326–342

    Article  Google Scholar 

  5. Renner R (2001) Environ Sci Technol 35(7):154A–160A

    Article  CAS  Google Scholar 

  6. Moody CA, Field JA (2000) Environ Sci Technol 34(18):3864–3870

    Article  CAS  Google Scholar 

  7. Kissa E (1994) Fluorinated surfactants: synthesis, properties and applications. Marcel Dekker, New York

    Google Scholar 

  8. Alzaga R, Bayona JM (2004) J Chromatogr A 1042(1–2):155–162

    Article  CAS  Google Scholar 

  9. Kaerrman A, Van Bavel B, Jaernberg U, Hardell L, Lindstroem G (2005) Anal Chem 77(3):864–870

    Article  CAS  Google Scholar 

  10. Tseng C-L, Liu L-L, Chen C-M, Ding W-H (2006) J Chromatogr A 1105(1–2):119–126

    Article  CAS  Google Scholar 

  11. Pan Y, Shi Y, Wang Y, Cai Y, Jiang G (2010) J Environ Monit 12(2):508–513

    Article  CAS  Google Scholar 

  12. Butenhoff JL, Kennedy GL, Frame SR, O'Connor JC, York RG (2004) Toxicology 196:95–116

    Article  CAS  Google Scholar 

  13. Kennedy GL, Butenhoff JL, Olsen GW, O'Connor JC, Seacat AM, Perkins RG, Biegel LB, Murphy SR, Farrar DG (2004) Crit Rev Toxicol 34:351–384

    Article  CAS  Google Scholar 

  14. Lau C, Butenhoff JL, Rogers JM (2004) Toxicol Appl Pharmacol 198(2):231–241

    Article  CAS  Google Scholar 

  15. Wolf CJ, Fenton SE, Schmid JE, Calafat AM, Kuklenyik Z, Bryant XA, Thibodeaux J, Das KP, White SS, Lau CS, Abbot BD (2007) Toxicol Sci 95(2):462–473

    Article  CAS  Google Scholar 

  16. Yeung LWY, Loi EIH, Wong VYY, Guruge KS, Yamanaka N, Tanimura N, Hasegawa J, Yamashita N, Miyazaki S, Lam PKS (2009) Arch Environ Contam Toxicol 57(2):377–386

    Article  CAS  Google Scholar 

  17. Silva AOD, Mabury SA (2004) Environ Sci Technol 38(24):6538–6545

    Article  Google Scholar 

  18. Hekster FM, Laane RWPM (2003) Voogt Pd. Rev Environ Contam Toxicol 179:99–121

    Article  CAS  Google Scholar 

  19. Allsopp M, Santillo D, Walters A, Johnston P (2005) Perfluorinated chemicals: an emerging concern. Technical note, vol GRL-TN-04-2005. Green Peace Research Laboratories, Exeter

  20. Saito K, Uemura E, Ishizaki A, Kataoka H (2010) Anal Chim Acta 658(2):141–146

    Article  CAS  Google Scholar 

  21. Fei CY, McLaughlin JK, Lipworth L, Olsen L (2009) Human Reprod 24(5):1200–1205

    Article  CAS  Google Scholar 

  22. European Food Safety Authority (2008) The EFSA Journal 653:1–131

    Google Scholar 

  23. Powley CR, George SW, Ryan TW, Buck RC (2005) Anal Chem 77(19):6353–6358

    Article  CAS  Google Scholar 

  24. Llorca M, Farre M, Pico Y, Barcelo D (2009) J Chromatogr A 1216(43):7195–7204

    Article  CAS  Google Scholar 

  25. Quinete N, Wu Q, Zhang T, Yun SH, Moreira I, Kannan K (2009) Chemosphere 77(6):863–869

    Article  CAS  Google Scholar 

  26. Wang L, Sun H, Yang L, He C, Wu W, Sun S (2010) J Chromatogr A 1217(4):436–442

    Article  CAS  Google Scholar 

  27. van Leeuwen SPJ, de Boer J (2007) J Chromatogr A 1153(1–2):172–185

    Google Scholar 

  28. Pensado L, Casais MC, Mejuto MC, Cela R (2005) J Chromatogr A 1077(2):103–109

    Article  CAS  Google Scholar 

  29. Thurman EM, Mills MS (1998) Solid-phase extraction: principles and practice, vol 147. Chemical analysis: a series of monographs on analytical chemistry and its applications. Wiley, New York

    Google Scholar 

  30. Berger U, Haukas M (2005) J Chromatogr A 1081(2):210–217

    Article  CAS  Google Scholar 

  31. Lacina O, Hradkova P, Pulkrabova J, Hajslova J (2010) J Chromatogr A 1217(5):648–659

    Article  CAS  Google Scholar 

  32. Lien G-W, Wen T-W, Hsieh W-S, Wu K-Y, Chen C-Y, Chen P-C (2011) J Chromatogr B 879(9–10):641–646

    Article  CAS  Google Scholar 

  33. Wille K, Kiebooms JAL, Claessens M, Rappé K, Bussche JV, Noppe H, Praet NV, Wulf ED, Caeter PV, Janssen CR, Brabander HFD, Vanhaecke L (2011) Anal Bioanal Chem 400(5):1459–1472

    Article  CAS  Google Scholar 

  34. Richardson SD (2008) Anal Chem 80(12):4373–4402

    Article  CAS  Google Scholar 

  35. Moody CA, Field JA (1999) Environ Sci Technol 33(16):2800–2813

    Article  CAS  Google Scholar 

  36. Ylinen M, Hanhijärvi H, Peura P, Ramo O (1985) Arch Environ Contam Toxicol 14(6):713–717

    Article  CAS  Google Scholar 

  37. Jahnke A, Berger U (2009) J Chromatogr A 1216(3):410–421

    Article  CAS  Google Scholar 

  38. García-López M, Canosa P, Rodríguez I (2008) Anal Bioanal Chem 391(3):963–974

    Article  Google Scholar 

  39. Cataldi TRI, Orlando D, Nardiello D, Rubino A, Bianco G, Abate S, Ciriello R, Guerrieri A (2007) Anal Chim Acta 597(1):129–136

    Article  CAS  Google Scholar 

  40. Lewis GA, Mathieu D, Phan-Tan-Luu R (1999) Pharmaceutical experimental design. Marcel Dekker, New York

    Google Scholar 

  41. Rodríguez I, Quintana JB, Carpinteiro J, Carro AM, Lorenzo RA, Cela R (2003) J Chromatogr A 985(1–2):265–274

    Article  Google Scholar 

  42. SciFinder Database https://scifinder.cas.org

  43. Delinsky AD, Strynar MJ, Nakayama SF, Varns JL, Ye X, McCann PJ, Lindstrom AB (2009) Environ Res 109(8):975–984

    Article  CAS  Google Scholar 

  44. Reemtsma T, Quintana JB (2006) Analytical methods for polar pollutants. In: Reemtsma T, Jekel M (eds) Organic pollutants in the water cycle. Wiley, Weinheim, pp 1–40

    Chapter  Google Scholar 

  45. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75(13):3019–3030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovación) and FEDER funds; project no. CTQ2009-08377 and Xunta de Galicia, project no. 10MDS70006PR. RR and JBQ extend their gratitude to the Spanish Ministry of Science and Innovation (Ramón y Cajal research program). Finally, we are indebted to INTECMAR for kindly providing of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Rodil.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaverde-de-Sáa, E., Quintana, J.B., Rodil, R. et al. Determination of perfluorinated compounds in mollusks by matrix solid-phase dispersion and liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 402, 509–518 (2012). https://doi.org/10.1007/s00216-011-5302-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5302-y

Keywords

Navigation