Skip to main content
Log in

Use of in situ and confocal Raman spectroscopy to study the nature and distribution of carotenoids in brown patinas from a deteriorated wall painting in Marcus Lucretius House (Pompeii)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Colonisation of wall paintings by microorganisms and other organisms is a well-known problematic phenomenon. Besides taxonomic identification of the biodeteriogen, it is essential to evaluate the consequences of the colonisation, e.g., unsightly coloured patinas. This work proposes new methodology for characterisation of the nature of the main carotenoids and their distribution in brown stains or patinas of a deteriorated wall painting on the north wall of the atrium of Marcus Lucretius House (Pompeii, Italy). Characterisation of the brown patinas and surrounding areas (plaster and polychromy) from the wall painting started with in situ screening using, mainly, a portable Raman instrument with a handheld FTIR (DRIFTS sampling interface) in order to select the sampling areas suitable for further analysis in the laboratory. Two wall painting fragments were then analysed in the laboratory in two steps. First, microscopic observations (SEM and phase-contrast microscopy) were used to determine whether biodeteriogens were present in the samples. In a second step, confocal Raman microscopy (785 and 514 nm excitation lasers) was used to characterise the main biogenic compounds of the brown stains. Because of the resonance Raman effect (514 nm excitation laser), it was possible to obtain reliable Raman features to assign not only the nature of the main biogenic pigments (carotenoids) present in the stains, but also their spatial conformation. Moreover, Raman confocal applications, for example, Raman imaging and depth profiling were also used in a first attempt to determine the distribution of biosynthesised carotenoids in the stains, and to determine the thickness of the brown patinas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ciferri O (1999) Appl Environ Microbiol 65:879–885

    CAS  Google Scholar 

  2. Gorbushina AA, Heyrman J, Dornieden T, Gonzalez-Delvalle M, Krumbein WE, Laiz L, Petersen K, Siaz-Jimenez C, Swings J (2004) Int Biodeter Biodegr 53:13–24

    Article  Google Scholar 

  3. Pérez-Alonso M, Castro K, Madariaga JM (2006) Anal Chim Acta 571:121–128

    Article  Google Scholar 

  4. Castro K, Sarmiento A, Martinez-Arkarazo I, Madariaga JM, Fernández LA (2008) Anal Chem 80:4103–4110

    Article  CAS  Google Scholar 

  5. Macedo MF, Miller AZ, Dionísio A, Saiz-Jimenez C (2009) Microbiol 155:3476–34

    Article  CAS  Google Scholar 

  6. de los Rios A, Cámara B, García del Cura MA, Rico VJ, Galván V, Ascaso C (2009) Sci Total Environ 407:1123–1134

    Article  Google Scholar 

  7. Moroni B, Pitzurra L (2008) Int Biodeter Biodegr 62:391–396

    Article  CAS  Google Scholar 

  8. Sterflinger K (2010) Fungal Biol Rev 24:47–55

    Article  Google Scholar 

  9. Ciferri O (1999) Appl Environ Microb 65:879–885

    CAS  Google Scholar 

  10. Altieri A, Ricci S (1997) Int Biodet Biodegr 40:201–204

    Article  CAS  Google Scholar 

  11. Pinar G, Saiz-Jimenez C, Schabereiter-Gurtner C, Blanco-Varela MT, Lubitz W, Rolleke S (2001) FEMS Microbiol Ecol 37:45–54

    Article  CAS  Google Scholar 

  12. Bastian F, Alabouvette C (2009) Int J Speleol 38:55–60

    Google Scholar 

  13. http://www.arcchip.cz/w08/w08_gomoiu.pdf [last accessed 21 November 2010]

  14. Welton RG, Ribas SM, Gaylarde C, Herrera LK, Anleo X, De Belie N, Modry S (2005) Mat Struct 38:883–893

    Article  CAS  Google Scholar 

  15. Gaylarde P, Englert G, Ortega-Morales O, Haylarde C (2006) Int Biodeter Biodegr 58:119–123

    Article  CAS  Google Scholar 

  16. Czeczuga B, Czeczuga-Semeniuk E, Semeniuk A (2006) Trends Photochem Photobiol 11:105–116

    CAS  Google Scholar 

  17. Guaratini T, Cardozo KHM, Pinto E, Colepicolo P (2009) Journal of the Brazilian Chemical Society 20:1609–1616

    Article  CAS  Google Scholar 

  18. Jorge Villar SE, Edwards HGM, Seaward MRD (2004) Spectrochim Acta A 60:1229–1237

    Article  Google Scholar 

  19. Efremov EV, Ariese F, Gooijer C (2008) Anal Chim Acta 606:119–134

    Article  CAS  Google Scholar 

  20. Veronelli M, Zerbi G, Stradi R (1995) J Raman Spectrosc 26:683–692

    Article  CAS  Google Scholar 

  21. Maguregui M, Prieto-Taboada N, Trebolazabala J, Goienaga N, Arrieta N, Aramendia J, Gomez-Nubla L, Sarmiento A, Olivares M, Carrero J, Martinez-Arkarazo I, Castro K, Arana G, Olazabal MA, Fernandez LA, Madariaga JM (2010) ChemCH, First International Congress Chemistry for Cultural Heritage, Ravenna, Italy, pp 168

  22. Maguregui M, Knuutinen U, Martínez-Arkarazo I, Castro K, Madariaga JM (2011) Anal Chem 83:3319–3326

    CAS  Google Scholar 

  23. Bell IM, Clark RJH, Gibbs PJ (1997) Spectrochim Acta A 53:2159–2179

    Article  Google Scholar 

  24. Saiz-Jimenez C (1999) Geomicrobiol J 16:27–37

    Article  CAS  Google Scholar 

  25. http://www1.biogema.de/biogema/htdocs/index.php?choosenlang=EN&choosenmenu=home [last accessed 24 November 2010]

  26. Lichetenthaler HK (2009) Bulletin of the Georgian National Academy of Science 3:81–94

    Google Scholar 

  27. Kuzmany H (1980) Phys Stat Sol 97:521–531

    Article  CAS  Google Scholar 

  28. Schaffer HE, Chance RR, Silbey RJ, Knoll K, Schrock RR (1991) J Chem Phys 94:4161–4170

    Article  CAS  Google Scholar 

  29. Vítek P, Jehlička J, Edwards HGM, Osterrothová K (2009) Anal Bioanal Chem 393:1967–1975

    Article  Google Scholar 

  30. Barnard W, de Waal D (2006) J Raman Spectrosc 37:342–352

    Article  CAS  Google Scholar 

  31. Parker SF, Tavender SM, Dixon NM, Herman H, Williams KPJ, Maddams WF (1999) App Spectrosc 53:86–91

    Article  CAS  Google Scholar 

  32. Marshall CP, Leuko S, Coyle CM, Walter MR, Burns BP, Neilan BA (2007) Astrobiol 7:631–643

    Article  CAS  Google Scholar 

  33. Nakamura R, Yamamoto S, Nakahara J (2001) J Chem Phys 117:238–247

    Article  Google Scholar 

  34. Hu Y, Hashimoto H, Moine G, Hengartner U, Koyama Y (1997) J Chem Soc Perkin Trans 2:2699–2710

    Google Scholar 

  35. Koyama Y, Takutsuka I, Nakata M, Tasumi M (1988) J Raman Spectrosc 19:37–49

    Article  CAS  Google Scholar 

  36. Matsuzaki K, Shimada R (2010) XXII International Conference on Raman Spectroscopy Book of Abstracts

  37. Edwards HGM, Doménech-Carbo MT, Hargreaves MD, Doménech-Carbo A (2008) J Raman Spectrosc 39:444–452

    Article  CAS  Google Scholar 

  38. Hernanz A, Gavira-Vallejo J, Ruiz-López J, Edwards HGM (2008) 39:972–984

  39. Lunde K, Zechmeister L (1955) J Am Chem Soc 77:1647–1653

    Article  CAS  Google Scholar 

  40. Franceschi VR, Nakata PA (2005) Annu Rev Plant Biol 56:41–71

    Article  CAS  Google Scholar 

  41. Andreeval A, Velitchkova M (2005) Biophys Chem 114:129–135

    Article  Google Scholar 

  42. Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjevi EM (2010) Biotechnol Bioengineer 105:889–898

    CAS  Google Scholar 

  43. Bhatnagar A, Bhatnagar M (2005) Curr Sci 89:91–100

    Google Scholar 

  44. Konno H, Nakashima S, Katoh K (2010) J Plant Phys 167:358–364

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Finnish EPUH project group, especially Emeritus Professor Paavo Castren and Docent Antero Tammisto (Helsinki University), for their technical assistance in Marcus Lucretius House. The authors also thank Professor Isabel Salcedo (Department of Plant Biology and Ecology, University of the Basque Country). Support from the Research Vice-Chancellor’s Office of the University of the Basque Country is also gratefully acknowledged. This work was financially supported by the Spanish Government (MICINN) through the IMDICOGU project (ref. BIA2008-06592) and the Accompanying Action APUV 2010 (ref. CTQ2010-10820-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maguregui.

Additional information

Published in the special issue Analytical Techniques in Art, Archaeology and Conservation Science with guest editor Oliver Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maguregui, M., Knuutinen, U., Trebolazabala, J. et al. Use of in situ and confocal Raman spectroscopy to study the nature and distribution of carotenoids in brown patinas from a deteriorated wall painting in Marcus Lucretius House (Pompeii). Anal Bioanal Chem 402, 1529–1539 (2012). https://doi.org/10.1007/s00216-011-5276-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5276-9

Keywords

Navigation