Skip to main content
Log in

Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Soil bacteria are sensitive to ecological change and can be assessed to gauge anthropogenic influences and ecosystem health. In recent years, there has been a significant increase in the focus on new technologies that can be applied to the evaluation of soil quality. Laser-induced breakdown spectroscopy (LIBS) is a promising technique that has been used for the investigation and characterization of explosives, solids, liquids, gases, biological and environmental samples. In this study, bacteria from un-mined and a chronosequence of reclaimed bauxite soils were isolated on Luria–Bertani agar media. Polymerase chain reaction amplification of the bacterial 16S rDNA, sequencing, and phylogenetic analysis were applied to each isolated soil bacteria from the sample sites resulting in the identification and classification of the organisms. Femtosecond LIBS performed on the isolated bacteria showed atomic and ionic emission lines in the spectrum containing inorganic elements such as sodium (Na), magnesium (Mg), potassium (K), zinc (Zn), and calcium (Ca). Principal component analysis and partial least squares regression analysis were performed on the acquired bacterial spectra demonstrating that LIBS has the potential to differentiate and discriminate among bacteria in the un-mined and reclaimed chronosequence of bauxite soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dworzanski JP, Snyder AP, Chen R, Zang H, Wishart D, Li L (2004) Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring. Anal Chem 76:2355–2366

    Article  CAS  Google Scholar 

  2. van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87

    Article  Google Scholar 

  3. Schmidt NE, Goode SR (2002) Analysis of aqueous solutions by laser-induced breakdown spectroscopy of ion exchange membranes. Appl Spectrosc 56:370–374

    Article  CAS  Google Scholar 

  4. Morel S, Leon N, Adam P, Amouroux J (2003) Detection of bacteria by time-resolved laser-induced breakdown spectroscopy. Appl Opt 42:6184–6191

    Article  CAS  Google Scholar 

  5. Martin MZ, Cheng MD (2000) Detection of chromium aerosol using time-resolved laser-induced plasma spectroscopy. Appl Spectrosc 54:1279–1285

    Article  CAS  Google Scholar 

  6. Galiová M, Kaiser J, Novotný K, Samek O, Reale L, Malina R, Páleníková K, Liška M, Čudek V, Kanický V, Otruba V, Poma A, Tucci A (2007) Spectrochimica Acta Part B 62:1597–1605

    Article  Google Scholar 

  7. Multari R, Cremers DA, Dupre JM, Gustafson JE (2010) The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains. Appl Spectrosc 64:750–759

    Article  CAS  Google Scholar 

  8. Rehse SJ, Diedrich J, Palchaudhuri S (2007) Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B 62:1169–1176

    Article  Google Scholar 

  9. Rehse SJ, Jeyasingham N, Diedrich J, Palchaudhuri S (2009) A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy J. Appl Phys 105:102034-1-13

    Google Scholar 

  10. Barnett C, Bell C, Komal Vig AC, Akpovo LJ, Pillai S, Singh S (2011) Development of a LIBS assay for the detection of Salmonella enterica serovar typhimurium from food. Anal Bioanal Chem 400(10):3323–3330

    Article  CAS  Google Scholar 

  11. Samek O, Beddows DCS, Telle HH, Morris GW, Liska M, Kaiser J (1999) Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy. Appl Phys A 69:S179–S182

    CAS  Google Scholar 

  12. Samek O, Liška M, Kaiser J, Beddows DCS, Telle HH, Kukhlevsky SV (2000) J Clin Laser Med Surg 18:281

    CAS  Google Scholar 

  13. Samuels AC, De Lucia FC Jr, McNesby KL, Miziolek AW (2003) Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens and protein: initial studies of discrimination potential. Appl Opt 42:6205–6209

    Article  CAS  Google Scholar 

  14. M Baudelet, L Guyon, J Yu, J-P Wolf, T Amodeo, E Frejafon, P Laloi (2006) Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy. Appl. Phys. Lett. 88(063901-1-3)

    Google Scholar 

  15. M Baudelet, L Guyon, J Yu, J-P Wolf, T Amodeo, E Frejafon, P Laloi (2006) Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime, J. Appl. Phys. 99(084701-4-9)

    Google Scholar 

  16. Lewis DE, White JR, Wafula D, Athar R, Williams HN, Chauhan A (2010) Soil functional diversity analysis of a bauxite mined restoration chronosequence. Microb Ecol 59:710–723

    Article  Google Scholar 

  17. Scholten JJ, Andriesse W (1986) Morphology, genesis and classification of three soils over limestone, Jamaica. Geoderma 39:1–40

    Article  CAS  Google Scholar 

  18. Muyzer G, De Waal C, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  19. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Cryst 43:1126–1128

    Article  CAS  Google Scholar 

  20. Rosipal R, Krämer N (2006) Overview and Recent Advances in Partial Least Squares. In C. Saunders, M. Grobelnik, S. Gunn, & J. Shawe-Taylor (Eds.), Subspace, Latent Structure and Feature Selection Techniques. Springer

  21. Martin MZ, Labbe’ N, Rials TG, Wullschleger SD (2005) Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra. Spectrochimica Acta Part B 60:1179–1185

    Article  Google Scholar 

  22. Heaton HI (2005) Principal-components analysis of fluorescence cross-section spectra from pathogenic and simulant bacteria. Appl Opt 44:6486–6495

    Article  Google Scholar 

  23. Wold S, Sjöstöm M, Erikkson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  24. Rials TG, Kelley SS, So C-L (2002) Use of advanced spectroscopic techniques for predicting the mechanical properties of wood composites. Wood Fiber Sci 34:398–407

    CAS  Google Scholar 

  25. Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemometr 17:166–173

    Article  CAS  Google Scholar 

  26. Ciosek P, Brzózka Z, Wróblewski W, Martinelli E, Di Natale C, D’Amico A (2005) Direct and two stage data analysis procedures based on PCA, PLS-DA and ANN for ISE-based electronic tongue—effect of supervised feature extraction. Talanta 67:590–596

    Article  CAS  Google Scholar 

  27. Singleton P (1997) Bacteria in biology, biotechnology and medicine, 4th edn. Wiley, Chichester

    Google Scholar 

  28. Beebe K, Pell R, Seasholtz MB (1998) Chemometrics: a practical guide, 1st edn. Wiley-Interscience, New York

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support provided by JAMALCO/ALCOA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn E. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, D.E., Martinez, J., Akpovo, C.A. et al. Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy. Anal Bioanal Chem 401, 2225–2236 (2011). https://doi.org/10.1007/s00216-011-5274-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5274-y

Keywords

Navigation