Skip to main content
Log in

What determines MALDI ion yields? A molecular dynamics study of ion loss mechanisms

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ion recombination in matrix-assisted laser desorption/ionization (MALDI) is as important as any ion formation process in determining the quantity of ions observed but has received comparatively little attention. Molecular dynamics simulations are used here to investigate some models for recombination, including a Langevin-type model, a soft threshold model and a tunneling model. The latter was found to be superior due to its foundations in a widespread physical phenomenon, and its lack of excessive sensitivity to parameter choice. Tunneling recombination in the Marcus inverted region may be a major reason why MALDI is a viable analytical method, by allowing ion formation to exceed ion loss on the time scale of the plume expansion. Ion velocities, photoacoustic transients and pump-probe measurements might be used to investigate the role of recombination in different MALDI matrices, and to select new matrices.

Ablation of a thin MALDI sample as simulated by molecular dynamics. Yellow represents high density, black is low. The laser pulse was incident on the right side

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Knochenmuss R (2006) Ion formation mechanisms in UV-MALDI. Analyst 131:966–986

    Article  CAS  Google Scholar 

  2. Dreisewerd K (2003) The desorption process in MALDI. Chem Rev 103:395–426

    Article  CAS  Google Scholar 

  3. Puretzky AA, Geohegan DB (1997) Gas-phase diagnostics and LIF imaging of 3-hydroxypicolinic acid MALDI matrix plumes. Chem Phys Lett 286:425–432

    Article  Google Scholar 

  4. Dreisewerd K, Schürenberg M, Karas M, Hillenkamp F (1995) Influence of the laser intensity and spot size on the desorption of molecules and ions in matrix-assisted laser-desorption/ionization with a uniform beam profile. Int J Mass Spectrom Ion Proc 141:127–148

    Article  CAS  Google Scholar 

  5. Mowry C, Johnston M (1993) Simultaneous detection of ions and neutrals produced by matrix-assisted laser desorption. Rapid Comm Mass Spectrom 7:569–575

    Article  CAS  Google Scholar 

  6. Quist AP, Huth-Fehre T, Sundqvist BUR (1994) Total yield measurements in matrix-assisted laser desorption using a quartz crystal microbalance. Rapid Commun Mass Spectrom 8:149–154

    Article  CAS  Google Scholar 

  7. Ens W, Mao Y, Mayer F, Standing KG (1991) Properties of matrix-assisted laser desorption. Measurements with a time-to-digital converter. Rapid Commun Mass Spectrom 5:117–123

    Article  CAS  Google Scholar 

  8. Karas M, Glückmann M, Schäfer J (2000) Ionization in MALDI: singly charged molecular ions are the lucky survivors. J Mass Spectrom 35:1–12

    Article  CAS  Google Scholar 

  9. Pshenichnyuk SA, Asfandiarov NL (2004) The role of free electrons in MALDI: electron capture by molecules of alpha-cyano-4-hydroxycinnamic acid. Eur J Mass Spectrom 10:477–486

    Article  CAS  Google Scholar 

  10. Pshenichnyuk SA, Asfandiarov NL, Fal’ko VS, Lukin VG (2003) Temperature dependence of dissociative electron attachment to molecules of gentisic acid, hydroquinone and p-benzoquinone. Int J Mass Spectrom 227:281–288

    Article  CAS  Google Scholar 

  11. Pshenichnyuk SA, Asfandiarov NL, Fal’ko VS, Lukin VG (2003) Temperature dependencies of negative ion formation by capture of low-energy electrons for some typical MALDI matrices. Int J Mass Spectrom 227:259–272

    Article  CAS  Google Scholar 

  12. Lippa TP, Eustis SN, Wang D, Bowen KH (2007) Electrophilic properties of common MALDI matrix molecules. Int J Mass Spectrom. submitted

  13. Knochenmuss R, McCombie G, Faderl M (2006) The dependence of MALDI ion yield on metal substrates: photoelectrons from the metal vs. surface-enhanced matrix photoionization. J Phys Chem A 110:12728–12733

    Article  CAS  Google Scholar 

  14. McCombie G, Knochenmuss R (2006) Enhanced MALDI ionization efficiency at the metal-matrix interface: practical and mechanistic consequences of sample thickness and preparation method. J Am Soc Mass Spectrom 17:737–745

    Article  CAS  Google Scholar 

  15. Karas M, Krueger R (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 103:427–439

    Article  CAS  Google Scholar 

  16. Jaskolla TW, Karas M (2011) Compelling evidence for lucky survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. J Am Soc Mass Spectrom 22:976–988

    Article  CAS  Google Scholar 

  17. Alves S, Fournier I, Afonso C, Wind F, Tabet J-C (2006) Gas-phase ionization/desolvation processes and their effect on protein charge state distributions under MALDI conditions. Eur J Mass Spectrom 12:369–383

    Article  CAS  Google Scholar 

  18. Fournier I, Brunot A, Tabet J-C, Bolbach G (2002) Delayed extraction experiments using a repulsive potential before ion extraction: evidence of clusters as ion precursors in UV-MALDI. Part I: dynamical effects with the matrix 2,5-dihydroxybenzoic acid. Int J Mass Spectrom 213:203–215

    Article  CAS  Google Scholar 

  19. Fournier I, Brunot A, Tabet J-C, Bolbach G (2005) Delayed extraction experiments using a repulsive potential before ion extraction: evidence of non-covalent clusters as ion precursors in UV MALDI. Part II—dynamic effects with alpha-cyano-4-hydroxycinnamic acid matrix. J Mass Spectrom 40:50–59

    Article  CAS  Google Scholar 

  20. Livadaris V, Blais J-C, Tabet J-C (2000) Formation of non-specfic protein cluster ions in MALDI: abundances and dynamical aspects. Eur J Mass Spectrom 6:409–413

    Article  CAS  Google Scholar 

  21. Knochenmuss R (2002) A quantitative model of ultraviolet matrix-assisted laser desorption and ionization. J Mass Spectrom 37:867–877

    Article  CAS  Google Scholar 

  22. Knochenmuss R (2003) A quantitative model of UV-MALDI including analyte ion generation. Anal Chem 75:2199

    Article  CAS  Google Scholar 

  23. Knochenmuss R (2009) A bipolar rate equation model of MALDI primary and secondary ionization processes, with application to positive/negative analyte ion rations and suppression effects. Int J Mass Spectrom 285:105–113

    Article  CAS  Google Scholar 

  24. Zhigilei LV, Kodali PBS, Garrison BJ (1997) Molecular dynamics model for laser ablation and desorption of organic solids. J Phys Chem B 101:2028–2037

    Article  CAS  Google Scholar 

  25. Zhigilei LV, Garrison BJ (2000) Microscopic mechanism of laser ablation of organic solids in the thermal stress confinement irradiation regime. J Appl Phys 88:1–18

    Article  Google Scholar 

  26. Zhigilei LV (2003) Dynamics of the plume formation and parameters of the ejected clusters in short-pulse ablation. Appl Phys A 76:339–350

    Article  CAS  Google Scholar 

  27. Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer simulations of laser ablation of molecular substrates. Chem Rev 103:321–348

    Article  CAS  Google Scholar 

  28. Leveugle E, Zhigilei LV (2007) Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J Appl Phys 102:074914

    Article  Google Scholar 

  29. Balazs L, Gijbels R, Vertes A (1991) Expansion of laser-generated plumes near the plasma ignition threshold. Anal Chem 63:314–320

    Article  CAS  Google Scholar 

  30. Bencsura A, Navale V, Sadeghi M, Vertes A (1997) Matrix-guest energy transfer in matrix-assisted laser desorption. Rapid Commun Mass Spectrom 11:679–682

    Article  CAS  Google Scholar 

  31. Kristyan S, Bencsura A, Vertes A (2002) Modeling the cluster formation during infrared and ultraviolet MALDI o foligonucleotides in succinic acid matrix with molecular mechanics. Theor Chem Acc 107:319–325

    Article  CAS  Google Scholar 

  32. Wu X, Sadeghi M, Vertes A (1998) Molecular dynamics of matrix-assisted laser desorption of leucine enkephalin guest molecules from nicotinic acid host crystal. J Phys Chem B 102:4770–4778

    Article  CAS  Google Scholar 

  33. Knochenmuss R, Zhigilei LV (2005) A molecular dynamics model of UV-MALDI including ionization processes. J Phys Chem B 109:22947–229957

    Article  CAS  Google Scholar 

  34. Knochenmuss R, Zhigilei LV (2010) Molecular dynamics simulations of MALDI: laser fluence and pulse width dependence of plume characteristics and consequences for matrix and analyte ionization. J Mass Spectrom 45:333–346

    CAS  Google Scholar 

  35. Macha SF, McCarley TD, Limbach PA (1999) Influence of ionization energy on charge-transfer ionization in matrix-assisted laser desorption/ionization mass spectrometry. Anal Chim Acta 397:235–245

    Article  CAS  Google Scholar 

  36. McCarley TD, McCarley RL, Limbach PA (1998) Electron-transfer ionization in matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 70:4376–4379

    Article  CAS  Google Scholar 

  37. Streletskii A, Ioffe IN, Kotsiris SG, Barrow MP, Drewello T, Strauss SH, Boltalina OG (2005) In-plume thermodynamics of the MALDI generation of fullerene anions. J Phys Chem A 109:714–719

    Article  CAS  Google Scholar 

  38. Hoteling AJ, Nichols WF, Giesen DJ, Lenhard JR, Knochenmuss R (2006) Electron transfer reactions in LDI and MALDI: factors influencing matrix and analyte ion intensities. Eur J Mass Spectrom 12:345–358

    Article  CAS  Google Scholar 

  39. Langevin P (1903) Sur la loi de recombination des ions. Ann Chim Phys 28:433–530

    CAS  Google Scholar 

  40. Jortner J (1997) Spiers memorial lecture on dynamics. From isolated molecules to biomolecules. Faraday Discuss 108:1–22

    Article  CAS  Google Scholar 

  41. Marcus RA (1997) Electron transfer reactions in chemistry. Theory and experiment. Pure Appl Chem 69:13–29

    Article  CAS  Google Scholar 

  42. Marcus RA (1956) Marcus outer sphere electron transfer. J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  43. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802

    Article  CAS  Google Scholar 

  44. Gray HB, Winkler JR (2005) Long-range electron transfer. Proc Nat Acad Sci U S A 102:3534–3539

    Article  CAS  Google Scholar 

  45. Moser CC, Anderson JL, Dutton PL (2010) Guidelines for tunneling in enzymes. Biochim Biophys Acta 1797:1573–1586

    Article  CAS  Google Scholar 

  46. Knochenmuss R (1986) Theory of inelastic electron tunneling intensities which includes a non-constant barrier potential. Phys Rev B 33:7998

    Article  Google Scholar 

  47. Gray HB, Winkler JR (2009) Electron flow through proteins. Chem Phys Lett 483:1–9

    Article  CAS  Google Scholar 

  48. Schultz NA, Scharber MC, Brabec CJ, Saricifitci NS (2001) Low-temperature recombination kinetics of photoexcited persistent charge carriers in conjugated polymer/fullerene composite films. Phys Rev B 64:245210–245217

    Article  Google Scholar 

  49. Rohlfing A, Menzel C, Kukreja LM, Hillenkamp F, Dreisewerd K (2003) Photoacoustic analysis of MALDI processes with pulsed infrared lasers. J Phys Chem B 107:12275–12286

    Article  CAS  Google Scholar 

  50. Knochenmuss R, Vertes A (2000) Time-delayed 2-pulse studies of MALDI matrix ionization mechanisms. J Phys Chem B 104:5406–5410

    Article  CAS  Google Scholar 

  51. Moskovets E, Vertes A (2002) Fast dynamics of ionization in UV MALDI of biomolecules. J Phys Chem B 106:3301–3306

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors (L. V. Z.) acknowledges financial support from the National Science Foundation (Award CMMI-0800786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Knochenmuss.

Additional information

Published in the special issue Analytical Sciences in Switzerland with guest editors P. Dittrich, D. Günther, G. Hopfgartner, and R. Zenobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knochenmuss, R., Zhigilei, L.V. What determines MALDI ion yields? A molecular dynamics study of ion loss mechanisms. Anal Bioanal Chem 402, 2511–2519 (2012). https://doi.org/10.1007/s00216-011-5194-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5194-x

Keywords

Navigation