Skip to main content
Log in

Natural resins and balsams from an eighteenth-century pharmaceutical collection analysed by gas chromatography/mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Historical nomenclature has not always been unequivocally associated with the botanical origin of natural resins. The availability of natural resins has changed throughout the centuries and so have their trade names. Furthermore, adulterations and lack of knowledge have led to variations in the composition of the products traded under the same name. This investigation aims at a new understanding of the interrelation between the historical and modern terms for natural resins. Different Pinaceae and Pistacia resins, mastic, sandarac, copaiba balm and burgundy pitch from Vigani’s Cabinet, a 300-year-old pharmaceutical collection owned by Queens’ College, Cambridge (UK) were investigated. Related reference materials from modern collections were analysed together with natural resins derived from reliable botanical sources. The analytical method was gas chromatography/mass spectrometry (GC-MS) with and without derivatisation with trimethylsulfonium hydroxide. This technique provided detailed molecular compositions of the studied materials, which in turn led to particular data profiles of the materials. Marker molecules of Copaifera, Pinaceae, Cupressaceae and Pistacia resins were identified. By comparing the GC-MS data profiles to the reference samples, a clearer picture of the connection between nomenclature and botanical origin was obtained. With the aid of the marker molecules and data profiles, it was then possible to clarify the nomenclature of the aged resins sampled from Vigani’s Cabinet.

Four drawers from the Vigani Cabinet

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wagner L (2007) Fine art materials in Vigani’s Cabinet, 1704, of Queens’ College, Cambridge, vol 4. Dissertation Academy of Fine Arts, Dresden

    Google Scholar 

  2. van der Werf I, van den Berg KJ, Schmitt S, Boon JJ (2000) Molecular characterisation of copaiba balsam as used in painting techniques and restoration procedure. Stud Conserv 45:1–18

    Article  Google Scholar 

  3. Plowden C (2003) Production ecology of copaiba (Copaifera ssp.) oleoresin in the Eastern Brazilian Amazon. Econ Bot 57:491–501

    Article  Google Scholar 

  4. Cascon V, Gilbert B (2000) Characterisation of the chemical composition of oleoresins of Copaifera guianensis Desf., Copaifera dukei Dwyer and Copaifera multijuga Hayne. Phytochemistry 55:773–778

    Article  CAS  Google Scholar 

  5. Braga WF, Rezende CK, Antunes OAC, Pinto AC (1998) Terpenoids from Copaifera cearensis. Phytochemistry 49:263–264

    Article  CAS  Google Scholar 

  6. Ferrari M, Pagnoni UM, Pelizzoni F (1971) Terpenpoids from Copaifera langsdorfii. Phytochemistry 10:905–907

    Article  CAS  Google Scholar 

  7. van den Berg KJ, Ossebar J, van Keulen H (2002) In: van Grieken R, Janssens K, van’t Dack L, Meersman G (eds) Art 2002: proceedings of the 7th international conference, University of Antwerp, Antwerp-Wilrijk, pp. 1–10

  8. Scalarone D, Kazaari M, Chiantore O (2003) Aging behaviour and pyrolytic characterisation of diterpenic resins used as art materials: Manila copal and sandarac. J Anal Appl Pyrolysis 68(69):115–136

    Article  Google Scholar 

  9. Colombini MP, Modugno F (2009) Organic mass spectrometry in art and archaeology. Wiley, Chichester, pp 3–36

    Book  Google Scholar 

  10. Chiavari G, Montalbai S, Otero V (2008) Characterisation of varnishes used in violins by pyrolysis-gas chromatography/mass spectrometry. Rapid Comm Mass Spectrom 22:3711–3718

    Article  CAS  Google Scholar 

  11. Mills JS, White R (1999) The organic chemistry of museum objects. Butterworth, Oxford, pp 102–3

    Google Scholar 

  12. White R, Kirby J (2001) A survey of nineteenth- and early twentieth-century varnish compositions found on a selection of paintings in the National Gallery. National Gallery Technical Bulletin 22:64–84

    Google Scholar 

  13. Hegnauer R, Hegnauer M (2001) Chemotaxonomie der Pflanzen, vol 11b, 2. Birkhäuser, Basel, p 493

    Google Scholar 

  14. Koller J, Baumer U, Grosser D, Walch K (1997) In: Koller J, Walch K (eds) Baroque and Rococo Laquers. Lipp, München, pp 379–394

    Google Scholar 

  15. Mills JS, White R (1977) Natural resins of art and archaeology: their sources, chemistry, and identification. Stud Conserv 22:12–31

    Article  CAS  Google Scholar 

  16. Colombini MP, Modugno F, Giannarelli S, Fuoco R, Matteini M (2000) GC-MS characterisation of paint varnishes. Microchem J 67:385–396

    Article  CAS  Google Scholar 

  17. Assimopoulou AN, Papageorgiu VP (2005) GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. chia. Biomed Chrom 19:285–311

    Article  CAS  Google Scholar 

  18. Assimopoulou AN, Papageorgiu VP (2005) GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part II. Pistacia terebinthus var. chia. Biomed Chrom 19:586–605

    Article  CAS  Google Scholar 

  19. Scalarone D, Lazzari M, Chiantore O (2002) Ageing behaviour and analytical pyrolysis characterisation of diterpenic resins used as art materials: colophony and Venice turpentine. J Anal Appl Pyrolysis 64:345–361

    Article  CAS  Google Scholar 

  20. van den Berg KJ, Boon JJ, Pastorova I, Spetter LFM (2000) Mass spectrometric methology for the analysis of highly oxidised diterpenoid acid in Old Master paintings. J Mass Spectrom 35:512–533

    Article  Google Scholar 

  21. Mills JS, White R (1999) The organic chemistry of museum objects. Butterworth, Oxford, p 100

    Google Scholar 

  22. Hafizoglu H, Reunanen M (1994) Composition of oeloresins from bark and cones of Abies nordmanniana and Picea orientalis. Holzforschung 48:7–11

    Article  CAS  Google Scholar 

  23. Arrabal C, Cortijo M, de Fernandez SB, Garcìa-Vallejo MC, Cadahìa E (2005) Differentiation among five Spanish Pinus pinaster provenances based on its oleoresin terpenic composition. Biochem Syst Ecol 33:1007–1016

    Article  CAS  Google Scholar 

  24. Norin T (1972) Some aspects of the chemistry of the order Pinales. Phytochemistry 11:1231–1242

    Article  CAS  Google Scholar 

  25. Koller J, Baumer U, Grosser D, Walch K (1997) In: Koller J, Walch K (eds) Baroque and Rococo laquers. Lipp, München, pp 359–378

    Google Scholar 

  26. Pitthard V, Stone R, Stanek S, Griesser M, Kryza-Gersch C, Hanzer H (2010) Organic patinas on Renaissance and Baroque bronzes—interpretation of compositions of the original patination by using a set of simulated varnished bronze coupons. J Cult Heritage. doi:10.1016/j.culher.2010.09.002

  27. Koller J, Baumer U (2000) In: Kühlenthal M (ed) Japanese and European lacquerware. Lipp, Munich, pp 339–348

    Google Scholar 

  28. Hummel O (1998) Hummel/Scholl Atlas der Polymer- und Kunststoffanalyse, vol 2b/I. Carl Hanser Verlag, Munich, p 426

    Google Scholar 

  29. Dale S (1693) Pharmacologia seu Manuductio ad Materiam Medicam. Smith & Walford, London, pp 395–401

    Google Scholar 

  30. Lewis W (1761) An experimental history of the materia medica. Baldwin, London, p 324

    Google Scholar 

  31. Pomet P (1717) Der aufrichtige Materialist und Specerey-Händler. Gleditsch & Weidmann, Leipzig, p 143

    Google Scholar 

  32. Lemery N, Richtern CF (1721) Vollständiges Materialienlexikon. Johann Friedrich Baun, Leipzig, p 1174

    Google Scholar 

  33. von Linnè C (1753) Species Plantarum. Lars Salvius, Stockholm, p 1040

    Google Scholar 

  34. James R (1747) Pharmacopoeia Universalis. Hodges & Wood, London, p 429

    Google Scholar 

  35. Hill J (1751) A history of the materia medica. Longman et al., London, p 737

    Google Scholar 

  36. Vahl M (1791) Symbolae Botanicae. Möller et Filis, Haunia, p 96

    Google Scholar 

  37. Desfontaines R (1799) Flora Atlantica, vol 2. Desgranges, Paris, p 353

    Google Scholar 

  38. Krünitz J, Korth JWD (1824) Oekonomisch-technologische Encyklopädie, vol 136. Pauli, Berlin, p 74

    Google Scholar 

  39. Masters TM (1895) Tetraclinis. J Linn Soc London, Bot 30:14–15

    Google Scholar 

  40. Mills JS, White R (1999) The organic chemistry of museum objects. Butterworth, Oxford, p 95f

    Google Scholar 

  41. James R (1747) Pharmacopoeia Universalis. Hodges & Wood, London, p 402

    Google Scholar 

  42. Bauhin C (1623) Pinax theatri botanici. Oporinus, Basel, p 500

    Google Scholar 

  43. Manget JJ (1687) Pharmacopoeia Schrödero-Hoffmanniana. Philipp Andrea, Köln, p 64

    Google Scholar 

  44. Zwinger T (1724) Compendium Medicinae Universae. Thurnisios, Basel, p 499

    Google Scholar 

  45. James R (1747) Pharmacopoeia Universalis. Hodges & Wood, London, pp 452–453

    Google Scholar 

  46. Savary des Brûlons J, Savary P-L (1748) Dictionnare universel de commerce, vol 3. Estienne et Fils, Paris, pp 470(2)–472(2)

    Google Scholar 

  47. Pomet P (1717) Der aufrichtige Materialist und Specerey-Händler. Gleditsch & Weidmann, Leipzig, pp 419–433

    Google Scholar 

  48. Hill J (1751) A history of the materia medica. Longman et al., London, pp 705–711

    Google Scholar 

  49. van der Doelen GA, Boon JJ (2000) Artificial aging of varnish triterpenoids in solution. J Photochem Photobiol A 134:45

    Article  Google Scholar 

  50. Blanckaert S (1748) Lexikon medicum. Bierwirth, Magdeburg, p 660

    Google Scholar 

  51. Mappus M, Ehrmann JC (1742) Historia Plantarum Alsaticarum. Dulsecker, Amsterdam, pp 1–2

    Google Scholar 

  52. Lewis W (1761) An experimental history of the materia medica. Baldwin, London, p 551

    Google Scholar 

  53. Takeda H, Schuller WH, Lawrence RV (1968) The thermal isomerisation of Abietic acid. J Org Chem 33:1683–1684

    Article  CAS  Google Scholar 

  54. Enoki A (1976) Isomerisation and autooxidation of resin acids. Wood Res 59(60):49–57

    Google Scholar 

  55. Bambang W, Tachibana S, Tinambunan D (2006) Chemical composition of Indonesian Pinus merkusii turpentine oils, gum oleoresins and rosins from Sumatra and Java. Pak J Biol Sci 9:7–14

    Article  Google Scholar 

  56. Wang S (2007) Chemical composition characteristics of Pinus latteri Mason rosin and turpentine from the south of Cambodia. Chem Ind For Prod 5

  57. Coppen JJW, Clifton GD James DJ, Robinson JM, Supriana N (1993) Variability on xylem resin composition amongst natural populations of indonesian Pinus merkusii. Phytochemistry 33:129–136

    Article  CAS  Google Scholar 

  58. Papajannopoulos AD, Song ZQ, Liang ZQ, Spanos JA (2001) GC-MS analyis of oleoresin of three Greek pine species. Holz Roh Werkst 59:443–446

    Article  CAS  Google Scholar 

  59. Arrabal C, Cortijo M, de Fernandez SB, Garcia-Vallejo MC, Cadahia E (2002) Pinus pinaster oleoresin in Plus trees. Holzforschung 56:261–266

    Article  CAS  Google Scholar 

  60. Lemery N, Richtern CF (1721) Vollständiges Materialienlexikon. Johann Friedrich Braun, Leipzig, p 888

    Google Scholar 

  61. James R (1747) Pharmacopoeia Universalis. Hodges & Wood, London, p 403

    Google Scholar 

Download references

Acknowledgements

This investigation was funded by a stipend from the Stifterverband der Deutschen Wissenschaft and KulturInvest foundation. The authors are greatly indebted to The President and Fellows of Queens’ College, Cambridge, for allowing the samples to be taken from the Vigani’s Cabinet at Queen’s College and to Dr. Brian Callingham, of Queens’ College, Cambridge, for his help with the project and for taken the photographs. We are also very grateful to Annegret Fuhrmann for her assistance during the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gundel Steigenberger or Christoph Herm.

Additional information

Published in the special issue Analytical Chemistry to Illuminate the Past with guest editor Maria Perla Colombini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steigenberger, G., Herm, C. Natural resins and balsams from an eighteenth-century pharmaceutical collection analysed by gas chromatography/mass spectrometry. Anal Bioanal Chem 401, 1771–1784 (2011). https://doi.org/10.1007/s00216-011-5169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5169-y

Keywords

Navigation