Skip to main content
Log in

Raman spectroscopic detection of physiology changes in plasmid-bearing Escherichia coli with and without antibiotic treatment

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacterial resistances against antibiotics are increasingly problematic for medical treatment of pathogenic bacteria, e.g., in hospitals. Resistances are, among other genes, often encoded on plasmids which can be transmitted between bacteria not only within one species, but also between different species, genera, and families. The plasmid pDrive is transformed into bacteria of the model strain Escherichia coli DH5α. Within this investigation, we applied micro-Raman spectroscopy with two different excitation wavelengths in combination with support vector machine (SVM) and linear discriminant analysis (LDA) to differentiate between bacterial cultures according to their cultural plasmid content. Recognition rates of about 92% and 90% are achieved by Raman excitation at 532 and 244 nm, respectively. The SVM loadings reveal that the pDrive transformed bacterial cultures exhibit a higher DNA content compared to the untransformed cultures. To elucidate the influence of the antibiotic, ampicillin-treated cultures are also comprised within this study and are classified with rates of about 97% and 100% for 532 and 244 nm Raman excitation, respectively. The Raman spectra recorded with 532 nm excitation wavelength show differences of the secondary protein structure and enhanced stress-related respiration rates for the ampicillin-treated cultures. Independent cultural replicates of either ampicillin-challenged or non-challenged cultures are successfully identified with identification rates of over 90%.

The plasmid content of bacteria is directly evaluated by means of Raman spectroscopy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schlegel GH (1992) Allgemeine Mikrobiologie, 7th edn. Thieme, Stuttgart

    Google Scholar 

  2. Ream W (1989) Annu Rev Phytopathol 27:583–618

    Article  Google Scholar 

  3. Lilley AK, Bailey MJ (1997) Appl Environ Microbiol 63:1577–1583

    CAS  Google Scholar 

  4. Wang RF, Cao WW, Cerniglia CEJ (1997) Appl Microbiol 83:727–736

    Article  CAS  Google Scholar 

  5. Maquelin K, Choo-Smith LP, Kirschner C, Ngo-Thi NA, Naumann D, Puppels GJ (2002) Handbook of Vibrational Spectroscopy. In: Chalmers JM, Griffiths PR (eds), vol 5. Wiley, Chichester, pp 3308

  6. Sadovskaya I, Vinogradov E, Li J, Jabbouri S (2004) Carbohydr Res 339:1467–1473

    Article  CAS  Google Scholar 

  7. Hahn H, Falke D, Kaufmann SHE, Ullmann U (2005) Medizinische Mikrobiologie und Infektiologie, 5th edn. Springer, Heidelberg

    Book  Google Scholar 

  8. Riou JY, Caugant DA, Selander RK, Poolman JT, Guibourdenche M, Collatz E (1991) Eur J Clin Microbiol Infect Dis 10:405–409

    Article  CAS  Google Scholar 

  9. Kharlamenko VI, Kiyashko SI, Imbs AB, Vyshkvartzev DI (2001) Mar Ecol Prog Ser 220:103–117

    Article  CAS  Google Scholar 

  10. Kilic NK, Stensballe A, Otzen DE, Doenmez G. Bioresour Technol 101:2134–2140

  11. Baena JR, Lendl B (2004) Curr Opin Chem Biol 8:534–539

    Article  CAS  Google Scholar 

  12. Schrader B, Dippel B, Erb I, Keller S, Lochte T, Schulz H, Tatsch E, Wessel SJ (1999) Mol Struct 480–481:21–32

    Article  Google Scholar 

  13. Schweitzer-Stenner RJ (2005) Raman Spectrosc 36:276–278

    Article  CAS  Google Scholar 

  14. Walter A, Erdmann S, Bocklitz T, Jung E-M, Vogler N, Akimov D, Dietzek B, Rösch P, Kothe E, Popp J (2010) Analyst 135:908–917

    Article  CAS  Google Scholar 

  15. Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Chemphyschem 8:124–137

    Article  CAS  Google Scholar 

  16. Stöckel S, Meisel S, Böhme R, Elschner M, Rösch P, Popp JJ (2009) Raman Spectrosc 40:1469–1477

    Article  Google Scholar 

  17. Tripathi A, Jabbour RE, Treado PJ, Neiss JH, Nelson MP, Jensen JL, Snyder AP (2008) Appl Spectrosc 62:1–9

    Article  CAS  Google Scholar 

  18. Schuster KC, Urlaub E, Gapes JRJ (2000) Microbiol Meth 42:29–38

    Article  CAS  Google Scholar 

  19. Schuster KC, Reese I, Urlaub E, Gapes JR, Lendl B (2000) Anal Chem 72:5529–5534

    Article  CAS  Google Scholar 

  20. Rösch P, Harz M, Schmitt M, Peschke K-D, Ronneberger O, Burkhardt H, Motzkus H-W, Lankers M, Hofer S, Thiele H, Popp J (2005) Appl Environ Microbiol 71:1626–1637

    Article  Google Scholar 

  21. Krause M, Radt B, Rösch P, Popp JJ (2007) Raman Spectrosc 38:369–372

    Article  CAS  Google Scholar 

  22. Harz M, Kiehntopf M, Stöckel S, Rösch P, Straube E, Deufel T, Popp J (2009) J Biophotonics 2:70–80

    Article  CAS  Google Scholar 

  23. Tarcea N, Harz M, Rösch P, Frosch T, Schmitt M, Thiele H, Hochleitner R, Popp J (2007) Spectrochim Acta A 68A:1029–1035

    CAS  Google Scholar 

  24. Gaus K, Rösch P, Petry R, Peschke KD, Ronneberger O, Burkhardt H, Baumann K, Popp J (2006) Biopolymers 82:286–290

    Article  CAS  Google Scholar 

  25. Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Holzgrabe U, Schmitt M, Popp JJ (2007) Phys Chem 111:2898–2906

    CAS  Google Scholar 

  26. Lopez-Diez EC, Winder CL, Ashton L, Currie F, Goodacre R (2005) Anal Chem 77:2901–2906

    Article  CAS  Google Scholar 

  27. Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJJ (2002) Microbiol Meth 51:255–271

    Article  CAS  Google Scholar 

  28. Moritz TJ, Taylor DS, Polage CR, Krol DM, Lane SM, Chan JW (2010) Anal Chem 82:2703–2710

    Article  CAS  Google Scholar 

  29. Serban D, Benevides JM, Thomas GJ Jr (2002) Biochemistry 41:847–853

    Article  CAS  Google Scholar 

  30. Taylor RG, Walker DC, McInnes RR (1993) Nucleic Acids Res 21:1677–1678

    Article  CAS  Google Scholar 

  31. Sambrook JF, Russell DW (Eds) (2000) Molecular cloning: a laboratory manual, third edition

  32. The R Development Core Team (2009) R: a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0

  33. Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) Nucl Instrum Methods Phys Res Sect B B34:396–402

    Article  CAS  Google Scholar 

  34. Fearn T (2002) Handbook of Vibrational Spectroscopy. In:Chalmers JM, Griffiths PR(eds) Wiley, Chichester, vol 3, pp 2086

  35. Cortes C, Vapnik V (1995) Mach Learn 20:273–297

    Google Scholar 

  36. Ivanciuc O, Lipkowitz KB, Cundari TR (eds) (2007) Wiley-VCH, Wiley. pp 291–400

  37. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines

  38. Movasaghi Z, Rehman S, Rehman IU (2007) Appl Spectrosc Rev 42:493–541

    Article  CAS  Google Scholar 

  39. Harz M, Claus RA, Bockmeyer CL, Baum M, Rösch P, Kentouche K, Deigner HP, Popp J (2006) Biopolymers 82:317–324

    Article  CAS  Google Scholar 

  40. Kitagawa T, Kyogoku Y, Iizuka T, Ikeda-Saito M, Yamanaka TJ (1975) Biochem 78:719–728

    CAS  Google Scholar 

  41. Nelson WH, Manoharan R, Sperry JF (1991) Appl Spectrosc Rev 27:67–124

    Article  CAS  Google Scholar 

  42. Frushour BG, Koenig JL (1974) Biopolymers 13:455–474

    Article  CAS  Google Scholar 

  43. Benveniste R, Davies J (1973) Annu Rev Biochem 42:471–506

    Article  CAS  Google Scholar 

  44. Rimpler H (1999) In Biogene Arzneistoffe; Deutscher Apotheker Verlag, Stuttgart

  45. Chifiriuc M-C, Ditu L-M, Banu O, Bleotu C, Dracea O, Bucur M, Larion C, Israil Anca M, Lazar V (2009) Roum Arch Microbiol Immunol 68:27–33

    CAS  Google Scholar 

  46. Deneve C, Bouttier S, Dupuy B, Barbut F, Collignon A, Janoir C (2009) Antimicrob Agents Chemother 53:5155–5162

    Article  CAS  Google Scholar 

  47. Lopez E, Blazquez J (2009) Antimicrob Agents Chemother 53:3411–3415

    Article  CAS  Google Scholar 

  48. Craig WS, Gaber BPJ (1977) Am Chem Soc 99:4130–4134

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Graduiertenkolleg GK 1257 “Alteration and element mobility at the microbe-mineral interface” in the frame of the Jena School of Microbial Communication and Po563/7-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Popp.

Additional information

Published in the special issue Biophotonics with Guest Editors Jürgen Popp and Reiner Salzer.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, A., Reinicke, M., Bocklitz, T. et al. Raman spectroscopic detection of physiology changes in plasmid-bearing Escherichia coli with and without antibiotic treatment. Anal Bioanal Chem 400, 2763–2773 (2011). https://doi.org/10.1007/s00216-011-4819-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4819-4

Keywords

Navigation