Skip to main content

Advertisement

Log in

Reduction of temazepam to diazepam and lorazepam to delorazepam during enzymatic hydrolysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

It has been previously reported that treatment of urinary oxazepam by commercial β-glucuronidase enzyme preparations, from Escherichia coli, Helix pomatia and Patella vulgata, results in production of nordiazepam (desmethyldiazepam) artefact. In this study, we report that this unusual reductive transformation also occurs in other benzodiazepines with a hydroxyl group at the C3 position such as temazepam and lorazepam. As determined by liquid chromatography-mass spectrometry analysis, all three enzyme preparations were found capable of converting urinary temazepam into diazepam following enzymatic incubation and subsequent liquid–liquid extraction procedures. For example, when H. pomatia enzymes were used with incubation conditions of 18 h and 50 °C, the percentage conversion, although small, was significant—approximately 1% (0.59–1.54%) in both patient and spiked blank urines. Similarly, using H. pomatia enzyme under these incubation conditions, a reductive transformation of urinary lorazepam into delorazepam (chlordesmethyldiazepam) occurred. These findings have both clinical and forensic implications. Detection of diazepam or delorazepam in biological samples following enzyme treatment should be interpreted with care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Schwartz RH, Milteer R, LeBeau MA (2000) South Med J 93:558–561

    CAS  Google Scholar 

  2. Rickert VI, Wiemann CM, Berenson AB (2000) J Pediatr Adolesc Gynecol 13:37–42

    Article  CAS  Google Scholar 

  3. Scott-Ham M, Burton FC (2005) J Clin Forensic Med 12:175–186

    Article  Google Scholar 

  4. ElSohly MA, Gul W, Murphy TP, Avula B, Khan IA (2007) J Anal Toxicol 31:505–514

    CAS  Google Scholar 

  5. Woods JH, Winger G (1995) Psychopharmacology 118:107–115

    Article  CAS  Google Scholar 

  6. Stewart SH, Westra HA (2002) Curr Pharm Des 8:1–3

    Article  CAS  Google Scholar 

  7. Mandrioli R, Mercolini L, Raggi MA (2008) Curr Drug Metab 9:827–844

    Article  CAS  Google Scholar 

  8. Langner JG, Gan BK, Liu RH, Baugh LD, Chand P, Weng JL, Edwards C, Walia AS (1991) Clin Chem 37:1595–1601

    CAS  Google Scholar 

  9. Laloup M, Fernandez MDMR, Wood M, Maes V, De Boeck G, Vanbeckevoort Y, Samyn N (2007) Anal Bioanal Chem 388:1545–1556

    Article  CAS  Google Scholar 

  10. Pavlic M, Libiseller K, Grubwieser P, Schubert H, Rabl W (2007) Int J Leg Med 121:169–174

    Article  Google Scholar 

  11. Schubert B, Pavlic M, Libiseller K, Oberacher H (2008) Anal Bioanal Chem 392:1299–1308

    Article  CAS  Google Scholar 

  12. Joyce JR, Bal TS, Ardrey RE, Stevens HM, Moffat AC (1984) Biomed Mass Spectrom 11:284–289

    Article  CAS  Google Scholar 

  13. Maurer H, Pfleger K (1987) J Chromatogr A 422:85–101

    Article  CAS  Google Scholar 

  14. Japp M, Garthwaite K, Geeson AV, Osselton MD (1988) J Chromatogr A 439:317–339

    Article  CAS  Google Scholar 

  15. ElSohly MA, Feng S, Salamone SJ, Wu R (1997) J Anal Toxicol 21:335–340

    CAS  Google Scholar 

  16. Fu S, Lewis J, Wang H, Keegan J, Dawson M (2010) J Anal Toxicol 34:243–251

    CAS  Google Scholar 

  17. Smyth WF, McClean S, Ramachandran VN (2000) Rapid Commun Mass Spectrom 14:2061–2069

    Article  CAS  Google Scholar 

  18. Kratzsch C, Tenberken O, Peters FT, Weber AA, Kraemer T, Maurer HH (2004) J Mass Spectrom 39:856–872

    Article  CAS  Google Scholar 

  19. Dresen S, Kempf J, Weinmann W (2006) Forensic Sci Int 161:86–91

    Article  CAS  Google Scholar 

  20. Risoli A, Cheng JBY, Verkerk UH, Zhao J, Ragno G, Hopkinson AC, Siu KWM (2007) Rapid Commun Mass Spectrom 21:2273–2281

    Article  CAS  Google Scholar 

  21. Moffat AC, Osselton MD, Widdop B (2004) Clarke’s analysis of drugs and poisons: in pharmaceuticals, body fluids and postmortem material. Pharmaceutical Press, London, electronic version

    Google Scholar 

  22. Australia/New Zealand Standard™. Procedures for the specimen collection and the detection and quantitation of drugs of abuse in urine. AS/NZS 4308:2008, SAI-Global

  23. Hackett LP, Dusci LJ, Ilett KF, Chiswell GM (2002) Ther Drug Monit 24:652–657

    Article  CAS  Google Scholar 

  24. Wang P, Stone JA, Chen KH, Gross SF, Haller CA, Wu AHB (2006) J Anal Toxicol 30:570–575

    CAS  Google Scholar 

  25. Meatherall R (1994) J Anal Toxicol 18:382–384

    CAS  Google Scholar 

  26. Bertin I, Colombo G, Furlanut M, Benetello P (1989) Int J Clin Pharmacol Res 9:203–208

    CAS  Google Scholar 

  27. Ansseau M, von Frenckell R (1990) Neuropsychobiology 24:25–29

    Article  Google Scholar 

Download references

Acknowledgement

We are indebted to the contribution of Associate Professor Michael Dawson who sadly passed away in December 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanlin Fu.

Additional information

Published in the special issue Forensic Toxicology with Guest Editors Frank T. Peters, Hans H. Maurer and Frank Musshoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, S., Molnar, A., Bowron, P. et al. Reduction of temazepam to diazepam and lorazepam to delorazepam during enzymatic hydrolysis. Anal Bioanal Chem 400, 153–164 (2011). https://doi.org/10.1007/s00216-011-4723-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4723-y

Keywords

Navigation