Skip to main content
Log in

Sample classification for improved performance of PLS models applied to the quality control of deep-frying oils of different botanic origins analyzed using ATR-FTIR spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The selection of an appropriate calibration set is a critical step in multivariate method development. In this work, the effect of using different calibration sets, based on a previous classification of unknown samples, on the partial least squares (PLS) regression model performance has been discussed. As an example, attenuated total reflection (ATR) mid-infrared spectra of deep-fried vegetable oil samples from three botanical origins (olive, sunflower, and corn oil), with increasing polymerized triacylglyceride (PTG) content induced by a deep-frying process were employed. The use of a one-class-classifier partial least squares-discriminant analysis (PLS-DA) and a rooted binary directed acyclic graph tree provided accurate oil classification. Oil samples fried without foodstuff could be classified correctly, independent of their PTG content. However, class separation of oil samples fried with foodstuff, was less evident. The combined use of double-cross model validation with permutation testing was used to validate the obtained PLS-DA classification models, confirming the results. To discuss the usefulness of the selection of an appropriate PLS calibration set, the PTG content was determined by calculating a PLS model based on the previously selected classes. In comparison to a PLS model calculated using a pooled calibration set containing samples from all classes, the root mean square error of prediction could be improved significantly using PLS models based on the selected calibration sets using PLS-DA, ranging between 1.06 and 2.91% (w/w).

Sample classification employing PLS-DA, using statistical validation based on permutation testing, could be shown to improve the performance of PLS models applied to the quality control of deep frying oils of different botanic origins analyzed using ATR-FTIR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iñón FA, Garrigues S, de la Guardia M (2004) Anal Chim Acta 513:401–412

    Article  Google Scholar 

  2. Moros J, Galipienso N, Vilches R, Garrigues S, de la Guardia M (2008) Anal Chem 80:7257–7265

    Article  CAS  Google Scholar 

  3. Moros J, Kuligowski J, Quintás G, Garrigues S, de la Guardia M (2008) Anal Chim Acta 630:150–160

    Article  CAS  Google Scholar 

  4. Moros J, Cassella RJ, Barciela-Alonso MC, Moreda-Piñeiro A, Herbello-Hermelo P, Bermejo-Barrera P, Garrigues S, de la Guardia M (2010) Vib Spectrosc 53:204–213

    Article  CAS  Google Scholar 

  5. Eigenvector Research Inc., Wenatchee, USA. Available at: http://www.eigenvector.com

  6. Brereton RG (2009) Chemometrics for pattern recognition. Wiley, London

    Book  Google Scholar 

  7. Gertz C (2000) Eur J Lipid Sci Technol 102:566–572

    Article  CAS  Google Scholar 

  8. Kuligowski J, Quintás G, Garrigues S, de la Guardia M (2010) Chromatographia 71:201–209

    Article  CAS  Google Scholar 

  9. Marmesat S, Rodrigues E, Velasco J, Dobarganes MC (2007) Int J Food Sci Technol 42:601–608

    Article  CAS  Google Scholar 

  10. Guillén MD, Cabo N (1999) J Agric Food Chem 47:709–719

    Article  Google Scholar 

  11. Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E (2006) Anal Chim Acta 573–574:459–465

    Article  Google Scholar 

  12. Valdés AF, Garcia AB (2006) Food Chem 98:214–219

    Article  Google Scholar 

  13. Muik B, Lendl B, Molina-Diaz A, Valcarcel M, Ayora-Cañada MJ (2007) Anal Chim Acta 593:54–67

    Article  CAS  Google Scholar 

  14. Tena N, Aparicio R, García-González DL (2009) J Agric Food Chem 57:9997–10003

    Article  CAS  Google Scholar 

  15. Climaco Pinto R, Locquet N, Eveleigh L, Rutledge DN (2010) Food Chem 120:1170–1177

    Article  Google Scholar 

  16. Le Dréau Y, Dupuy N, Gaydou V, Joachim J, Kister J (2009) Anal Chim Acta 642:163–170

    Article  Google Scholar 

  17. Le Dréau Y, Dupuy N, Artaud J, Ollivier D, Kister J (2009) Talanta 77:1748–1756

    Article  Google Scholar 

  18. Moros J, Roth M, Garrigues S, de la Guardia M (2009) Food Chem 114:1529–1536

    Article  CAS  Google Scholar 

  19. Szabó A, Bázár G, Locsmándi L, Romvári R (2010) J Food Qual 33:42–58

    Article  Google Scholar 

  20. Kuligowski J, Quintás G, Garrigues S, de la Guardia M (2010) Anal Bioanal Chem 397:861–869

    Article  CAS  Google Scholar 

  21. Dupuy N, Duponchel L, Huvenne JP, Sombret B, Legrand P (1996) Food Chem 57:245–251

    Article  CAS  Google Scholar 

  22. Ozen BF, Weiss I, Mauer LJ (2003) J Agric Food Chem 51:5871–5876

    Article  CAS  Google Scholar 

  23. Yang H, Irudayaraj J, Paradkar MM (2005) Food Chem 93:25–32

    Article  CAS  Google Scholar 

  24. Beltrán Sanahuja A, Prats Moya MS, Maestre Pérez SE, Grané Teruel N, Martín Carratalá ML (2009) J Am Oil Chem Soc 86:51–58

    Article  Google Scholar 

  25. Lerma-García MJ, Ramis-Ramos G, Herrero-Martínez JM, Simó-Alfonso EF (2010) Food Chem 118:78–83

    Article  Google Scholar 

  26. de B. Harrington P, Kister J, Artaud J, Dupuy N (2009) Anal Chem 81:7160–7169

    Article  Google Scholar 

  27. Marbach R (2005) J Near Infrared Spectrosc 13:241–254

    Article  CAS  Google Scholar 

  28. Kuligowski J, Quintás G, Garrigues S, de la Guardia M (2009) J Sep Sci 32:4089–4095

    Article  CAS  Google Scholar 

  29. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde A, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Metabolomics 4:81–89

    Article  CAS  Google Scholar 

  30. Barker M, Rayens W (2003) J chemom 17:166–173

    Article  CAS  Google Scholar 

  31. Wold S, Sjöström M, Eriksson L (2001) Chem Int Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  32. Esbensen KH, Geladi P (2010) J chemom 24:168–187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JK acknowledges the “V Segles” grant provided by the University of Valencia to carry out this study. Authors acknowledge the financial support of Ministerio de Educación y Ciencia (Projects AGL2007-64567 and CTQ2008-05719/BQU) and Conselleria d´Educació de la Generalitat Valenciana (Project PROMETEO 2010-055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel de la Guardia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 72.7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuligowski, J., Carrión, D., Quintás, G. et al. Sample classification for improved performance of PLS models applied to the quality control of deep-frying oils of different botanic origins analyzed using ATR-FTIR spectroscopy. Anal Bioanal Chem 399, 1305–1314 (2011). https://doi.org/10.1007/s00216-010-4457-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4457-2

Keywords

Navigation