Skip to main content
Log in

Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Because of its high price, extra virgin olive oil is frequently targeted for adulteration with lower quality oils. This paper presents an innovative optical technique capable of quantifying and discriminating the adulteration of extra virgin olive oil caused by lower-grade olive oils. An original set-up for diffuse-light absorption spectroscopy in the wide 400–1,700 nm spectral range was experimented. It made use of an integrating sphere containing the oil sample and of optical fibers for illumination and detection; it provided intrinsically scattering-free absorption spectroscopy measurements. This set-up was used to collect spectroscopic fingerprints of authentic extra virgin olive oils from the Italian Tuscany region, adulterated by different concentrations of olive-pomace oil, refined olive oil, deodorized olive oil, and refined olive-pomace oil. Then, a straightforward multivariate processing of spectroscopic data based on principal component analysis and linear discriminant analysis was applied which was successfully capable of predicting the fraction of adulterant in the mixture, and of discriminating its type. The results achieved by means of optical spectroscopy were compared with the analysis of fatty acids, which was carried out by standard gas chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Willett WC (1998) Nutritional epidemiology, 2nd ed., vol. 30 of Monographs in Epidemiology and Biostatistics. Oxford University Press, New York

    Google Scholar 

  2. Paiva-Martins F, Fernandes J, Rocha S, Nascimento H, Vitorino R, Amado F, Borges F, Belo L, Santos-Silva A (2009) Effects of olive oil polyphenols on erythrocyte oxidative damage. Mol Nutr Food Res 53(5):609–616

    Article  CAS  Google Scholar 

  3. Gimeno E, Fitò M, Lamuela-Raventòs RM, Castellote AI, Covas M, Farré M, de La Torre-Boronat MC, Lòpez-Sabater MC (2002) Effect of ingestion of virgin olive oil on human low-density lipoprotein composition. Eur J Clin Nutr 56:114–120

    Article  CAS  Google Scholar 

  4. Covas MI (2007) Olive oil and the cardiovascular system. Pharmacol Res 55:175–186

    Article  CAS  Google Scholar 

  5. Commission Regulation EEC n. 2568/91 and subsequent amendements, online: http://eur-lex.europa.eu/LexUriServ/site/en/consleg/1991/R/01991R2568-20031101-en.pdf.

  6. Fasciotti M, Pereira Netto AD (2010) Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC-APCI-MS-MS. Talanta 81:1116–1125

    Article  CAS  Google Scholar 

  7. Agiomyrgianaki A, Petrakis PV, Dais P (2010) Detection of refined oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis. Talanta 80:2165–2171

    Article  CAS  Google Scholar 

  8. Priego Capote F, Ruiz Jiménez J, Luque de Castro MD (2007) Sequential (step-by-step) detection, identification and quantitation of extra virgin olive oil adulteration by chemometric treatment of chromatographic profiles. Anal Bioanal Chem 388:1859–1865

    Article  Google Scholar 

  9. Jafari M, Kadivar M, Keramat J (2009) Detection of adulteration of Iranian olive oil using instrumental (GC, NMR, DSC) methods. Journal of the American Oil Chemist Society 86:103–110

    Article  CAS  Google Scholar 

  10. Angiuli M, Bussolino GC, Ferrari C, Matteoli E, Righetti MC, Salvetti G, Tombari E (2009) Calorimetry for fast authentication of edible oils. Int J Thermophys 30:1014–1024

    Article  CAS  Google Scholar 

  11. Chiavaro E, Vittadini E, Rodriguez-Estrada MT, Cerretani L, Bendini A (2008) Differential scanning calorimeter application to the detection of refined hazelnut oil in extra virgin olive oil. Food Chem 110:248–256

    Article  CAS  Google Scholar 

  12. Ferrari C, Angiuli M, Tombari E, Righetti MC, Matteoli E, Salvetti G (2007) Promoting calorimetry for olive oil authentication. Thermochim Acta 459:58–63

    Article  CAS  Google Scholar 

  13. Lizhi H, Toyoda K, Ihara I (2010) Discrimination of olive oil adulterated with vegetable oil using dielectric spectroscopy. J Food Eng 96:167–171

    Article  Google Scholar 

  14. Marina AM, Che Man YB, Amin I (2010) Use of the SAW sensor electronic nose for detecting the adulteration of virgin coconut oil with RDB palm kernel olein. Journal of the American Oil Chemistry Society 87:263–270

    Article  CAS  Google Scholar 

  15. Hai Z, Wang J (2006) Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensors and Actuators B 119:449–455

    Article  Google Scholar 

  16. Lerma-Garcìa MJ, Ramis-Ramos G, Herrero-Martìnez JM, Simò-Alfonso EF (2010) Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem 118:78–83

    Article  Google Scholar 

  17. Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E (2006) Applications of Fourier transform-infrared spectroscopy to edible oils. Anal Chim Acta 573–574:459–465

    Article  Google Scholar 

  18. Gurdeniz G, Ozen B (2009) Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem 116:519–525

    Article  CAS  Google Scholar 

  19. Ozdemir D, Ozturk B (2007) Near infrared spectroscopic determination of olive oil adulteration with sunflower and corn oil. Journal of Food and Drug Analysis 15(1):40–47

    CAS  Google Scholar 

  20. Poulli KI, Mousdis GA, Georgiou CA (2007) Rapid synchronous fluorescence method for virgin olive oil adulteration assessment. Food Chem 105:369–375

    Article  CAS  Google Scholar 

  21. Guimet F, Ferré J, Boqué R (2005) Rapid detection of olive-pomace oil adulteration in extra virgin olive oils from the protected denomination of origin Siurana using excitation-emission fluorescence spectroscopy and three-way methods of analysis. Anal Chim Acta 544:143–152

    Article  CAS  Google Scholar 

  22. Christy AA, Kasemsumran S, Du Y, Ozaki Y (2004) The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Anal Sci 20:935–940

    Article  CAS  Google Scholar 

  23. Sayago A, Morales MT, Aparicio R (2004) Detection of hazelnut oil in virgin olive oil by a spectrofluorimetric method. Eur Food Res Technol 216:480–483

    Article  Google Scholar 

  24. Downey G, McIntyre P, Davies AN (2002) Detecting and quantifying sunflower oil adulteration in extra virgin olive oils from the Eastern Mediterranean by visible and near-infrared spectroscopy. J Agric Food Chem 50:5520–5525

    Article  CAS  Google Scholar 

  25. Maggio RM, Cerretani L, Chiavaro E, Kaufman TS, Bendini A (2010) A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils. Food Control 21:890–895

    Article  CAS  Google Scholar 

  26. Bucci R, Magrì AD, Magrì AL, Marini D, Marini F (2002) Chemical authentication of extra virgin olive oil varieties by supervised chemometric procedures. J Agric Food Chem 50:413–418

    Article  CAS  Google Scholar 

  27. Galtier O, Dupuy N, Le Dréau Y, Olliver D, Pinatel C, Kister J, Artaud J (2007) Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra. Anal Chim Acta 595:136–144

    Article  CAS  Google Scholar 

  28. Guimet F, Ferré J, Boqué R, Rius FX (2004) Application of unfold principal component analysis and parallel factor analysis to the exploratory analysis of olive oils by means of excitation–emission matrix fluorescence spectroscopy. Anal Chim Acta 515:75–85

    Article  CAS  Google Scholar 

  29. Torrecilla JS, Rojo E, Dominguez JC, Rodrìguez F (2010) A novel method to quantify the adulteration of extra virgin olive oil with low-grade olive oils by UV–VIS. J Agric Food Chem 58:1679–1684

    Article  CAS  Google Scholar 

  30. Mellon MG (1950) Analytical absorption spectroscopy. Wiley, New York

    Google Scholar 

  31. Bauman RP (1962) Absorption spectroscopy. Wiley, New York

    Google Scholar 

  32. Mark H, Workman J Jr (2003) Statistics in spectroscopy, 2nd edn. Academic, San Diego

    Google Scholar 

  33. Fecht I, Johnson M (1999) Non-contact scattering independent water absorption measurement using a falling stream and integrating sphere. Meas Sci Technol 10:612–618

    Article  CAS  Google Scholar 

  34. Merzlyak MN, Razi Naqvi K (2000) On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis. J Photochem Photobiol, B 58:123–129

    Article  CAS  Google Scholar 

  35. Jàvorfi T, Erostyàk J, Gàl J, Buzàdy A, Menczel L, Garab G, Razi Naqvi K (2006) Quantitative spectrophotometry using integrating cavities. J Photochem Photobiol, B 82:127–131

    Article  Google Scholar 

  36. Elterman P (1970) Integrating cavity spectroscopy. Appl Opt 9:2140–2142

    Article  CAS  Google Scholar 

  37. Fry ES, Kattawar GW, Pope RM (1992) Integrating cavity absorption meter. Appl Opt 31:2055–2065

    Article  CAS  Google Scholar 

  38. Nelson NB, Prézelin BB (1993) Calibration of an integrating sphere for determining the absorption coefficient of scattering suspensions. Appl Opt 32:6710–6717

    Article  CAS  Google Scholar 

  39. Kirk JTO (1995) Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity. Appl Opt 34:4397–4408

    Article  CAS  Google Scholar 

  40. Hawe E, Fitzpatrick C, Chambers P, Dooly G, Lewis E (2008) Hazardous gas detection using an integrating sphere as a multipass gas absorption cell. Sensors & Actuators A 141:414–421

    Article  Google Scholar 

  41. Hodgkinson J, Masiyano D, Tatam RP (2009) Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law. Appl Opt 48:5748–5758

    Article  Google Scholar 

  42. Alfano AR (ed) (2006) The supercontinuum laser source, 2nd edn. Springer, Berlin

    Google Scholar 

  43. Kaminski CF, Watt RS, Elder AD, Frank JH, Hult J (2008) Supercontinuum radiation for applications in chemical sensing and microscopy. Appl Phys B 92:367–378

    Article  CAS  Google Scholar 

  44. Source: http://www.fianium.com/ - Detector: http://www.instrumentsystems.com/—integrating sphere: http://www.labsphere.com/

  45. Mignani AG, Ottevaere H, Ciaccheri L, Thienpont H, Cacciari I, Parriaux O, Johnson M (2009) Innovative spectroscopy of liquids: a fiber optic supercontinuum source and an integrating cavity for scattering-free absorption measurements, Proc. SPIE vol. 7503 20 th International Conference on Optical Fibre Sensors, pp. 750377-1/4.

  46. Wold S, Sjostrom M, Erikkson L (2001) PLS-regression: a basic tool for chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  47. Naes T, Isaksson T, Fearn T, Davies T (2002) Multivariate calibration and classification. NIR Publications, Chichester

    Google Scholar 

  48. Brodnjak-Voncina D, Cencic-Kodba Z, Movic M (2005) Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids. Chemom Intell Lab Syst 75:31–43

    Article  CAS  Google Scholar 

  49. Christopoulou E, Lazaraki M, Komaitis M, Kaselimis K (2004) Effectiveness of determinations of fatty acids and triglycerides for the detection of adulteration of olive oils with vegetable oils. Food Chem 84:463–474

    Article  CAS  Google Scholar 

  50. Bendini A, Cerretani L, Vecchi S, Carrasco-Pancorbo A, Lercker G (2006) Protective effects of extra virgin olive oil phenolics on oxidative stability in the presence or absence of copper ions. J Agric Food Chem 54:4880–4887

    Article  CAS  Google Scholar 

  51. Christie WW (1998) Gas Chromatography and lipids: a practical guide, The Oily Press, Bridgewater, Somerset, UK, on line: http://www.pjbarnes.co.uk/free/GasChromatographyAndLipids.pdf.

  52. Vandeginste BGM, Massart DL, Buydens LCM, De Jong S, Lewi DJ, Smeyers-Verbeke J (1998) Handbook of chemometrics and qualimetrics. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the following initiatives for partial financial support: EC Network of Excellence on Micro-Optics (NEMO), EC Network of Excellence for Biophotonics (P4L), CNR Short-Term Mobility Program 2009, and A.R.S.I.A. Mr. Franco Cosi is acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Ciaccheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mignani, A.G., Ciaccheri, L., Ottevaere, H. et al. Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany. Anal Bioanal Chem 399, 1315–1324 (2011). https://doi.org/10.1007/s00216-010-4408-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4408-y

Keywords

Navigation