Skip to main content

Advertisement

Log in

Matrix solid-phase dispersion followed by gas chromatography-mass spectrometry for the determination of triclosan and methyl triclosan in sludge and sediments

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An expeditious method for the determination of triclosan (TCS) and methyl triclosan (MTCS) in sludge and sediment samples is presented. Extraction and cleanup steps were integrated in the same process using matrix solid-phase dispersion as sample preparation technique. Effects of different variables on the efficiency and the selectivity of the sample preparation process are discussed. Under final working conditions, samples (0.5 g) were dispersed with diatomaceous earth (1 g) and transferred to a polypropylene syringe containing 2 g of silica impregnated with sulphuric acid (15%, w:w). Analytes were recovered with 10 mL of dichloromethane. After solvent exchange to ethyl acetate, TCS was converted into the tert-butyldimethylsilyl derivative, and the extract was analysed by gas chromatography-mass spectrometry, without any additional cleanup. Obtained recoveries, for sludge and sediment samples spiked at different concentration levels, ranged from 86% to 113%, with associated standard deviations between 2 and 13%. Limits of quantification of the global method were 6 and 7 ng g−1 for MTCS and TCS, respectively. Both compounds were detected in all the processed sludge samples with maximum concentrations of 191 ng g−1 (MTCS) and 2,640 ng g−1 (TCS). The parent bactericide was also found in some sediment samples at concentrations up to 200 ng g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singer H, Müller S, Tixier C, Pillonel L (2002) Environ Sci Technol 36:4998–5004

    Article  CAS  Google Scholar 

  2. Canosa P, Rodríguez I, Rubí E, Cela R (2005) J Chromatogr A 1072:107–115

    Article  CAS  Google Scholar 

  3. Ying GG, Kookana RS (2007) Environ Int 33:199–205

    Article  CAS  Google Scholar 

  4. Bester K (2003) Water Res 37:3891–3896

    Article  CAS  Google Scholar 

  5. Agüera A, Fernández-Alba AR, Piedra L, Mézcua M, Gómez MJ (2003) Anal Chim Acta 480:193–205

    Article  Google Scholar 

  6. Chu S, Metcalfe CD (2007) J Chromatogr A 1164:212–218

    Article  CAS  Google Scholar 

  7. McClellan K, Halden RU (2010) Water Res 44:658–668

    Article  CAS  Google Scholar 

  8. Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ, Gunderson MP, Aggelen GV, Helbing CC (2006) Aquat Toxicol 80:217–227

    Article  CAS  Google Scholar 

  9. Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Environ Toxicol Chem 21:1338–1349

    Article  CAS  Google Scholar 

  10. DeLorenzo ME, Keller JM, Arthur CD, Finnegan MC, Harper HE, Winder VL, Zdankiewicz DL (2008) Environ Toxicol 23:224–232

    Article  CAS  Google Scholar 

  11. Coogan MA, La Point TW (2008) Environ Toxicol Chem 27:1788–1793

    Article  CAS  Google Scholar 

  12. Valters K, Li H, Alaee M, D’Sa I, Marsh G, Bergaman A, Letcher RJ (2005) Environ Sci Technol 39:5612–5619

    Article  CAS  Google Scholar 

  13. Boehmer W, Ruedel H, Wenzel A, Schroeter-Kermani C (2004) Organohalogen Compd 66:1489–1494

    CAS  Google Scholar 

  14. Mezcua M, Gómez MJ, Ferrer I, Agüera A, Hernando MD, Fernández-Alba AR (2004) Anal Chim Acta 524:241–247

    Article  CAS  Google Scholar 

  15. Fiss EM, Rule KL, Vikesland PJ (2007) Environ Sci Technol 41:2387–2394

    Article  CAS  Google Scholar 

  16. Canosa P, Morales S, Rodríguez I, Rubí E, Cela R, Gómez M (2005) Anal Bioanal Chem 383:1119–1126

    Article  CAS  Google Scholar 

  17. Lindström A, Buerge IJ, Poiger T, Bergqvist PA, Müller MD, Buser HR (2002) Environ Sci Technol 36:2322–2329

    Article  Google Scholar 

  18. Alaee M, D’Sa I, Bennet E, Letcher R (2003) Organohalogen Compd 62:136–139

    CAS  Google Scholar 

  19. Balmer ME, Poiger T, Droz C, Romanin K, Bergqvist PA, Mueller MD, Buser HR (2004) Environ Sci Technol 38:390–395

    Article  CAS  Google Scholar 

  20. Leiker TJ, Abney SR, Goodbred SL, Rosen MR (2009) Sci Total Environ 407:2102–2114

    Article  CAS  Google Scholar 

  21. Chen X, Bester K (2009) Anal Bioanal Chem 395:1877–1884

    Article  CAS  Google Scholar 

  22. Lozano N, Rice CP, Ramírez M, Torrents A (2010) Chemosphere 78:760–766

    Article  CAS  Google Scholar 

  23. Kinney CA, Furlong ET, Kolpin DW, Burkhardt MR, Zaugg SD, Werner SL, Bossio JP, Benotti MJ (2008) Environ Sci Technol 42:1863–1870

    Article  CAS  Google Scholar 

  24. Morales S, Canosa P, Rodríguez I, Rubí E, Cela R (2005) J Chromatogr A 1082:128–135

    Article  CAS  Google Scholar 

  25. Gatidou G, Thomaidis NS, Stasinakis AS, Lekkas TD (2007) J Chromatogr A 1138:32–41

    Article  CAS  Google Scholar 

  26. Ligon AP, Zuehlke S, Spiteller M (2008) J Sep Sci 31:143–150

    Article  CAS  Google Scholar 

  27. Canosa P, Rodríguez I, Rubí E, Ramil M, Cela R (2008) J Chromatogr A 1188:132–139

    Article  CAS  Google Scholar 

  28. Barker AS, Long AR, Short CR (1989) J Chromatogr A 475:353–361

    Article  CAS  Google Scholar 

  29. García-López M, Canosa P, Rodríguez I (2008) Anal Bioanal Chem 391:963–974

    Article  Google Scholar 

  30. Mol HGJ, Sunarto S, Steijger OM (2000) J Chromatogr A 879:97–112

    Article  CAS  Google Scholar 

  31. Nieto A, Borrull F, Marcé RM, Pocurull E (2009) J Chromatogr A 1216:5619–5625

    Article  CAS  Google Scholar 

  32. Stasinakis AS, Gatidou G, Mamais D, Thomaidis NS, Lekkas TD (2008) Water Res 42:1796–1804

    Article  CAS  Google Scholar 

  33. Kronimus A, Schwarzbauer J, Dsikowitzky L, Heim S, Littke R (2004) Water Res 38:3473–3484

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Spanish Government and EU FEDER funds (project CTQ2009-08377). I.G.M. and J.B.Q. thank their FPU and Ramón y Cajal research contracts to the Spanish Ministries of Education and Science-Innovation, respectively. We acknowledge Labaqua for supplying the sludge samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Mariño, I., Rodríguez, I., Quintana, J.B. et al. Matrix solid-phase dispersion followed by gas chromatography-mass spectrometry for the determination of triclosan and methyl triclosan in sludge and sediments. Anal Bioanal Chem 398, 2289–2297 (2010). https://doi.org/10.1007/s00216-010-4136-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4136-3

Keywords

Navigation