Skip to main content

Advertisement

Log in

Determination of marker pteridines in urine by HPLC with fluorimetric detection and second-order multivariate calibration using MCR-ALS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A liquid chromatographic method has been developed, in combination with the multivariate curve resolution-alternating least squares algorithm (MCR-ALS), for the simultaneous determination of marker pteridines in urine samples. A central composite design has been applied to optimize the factors influencing the separation (buffer concentration, buffer pH, flow rate, oven temperature, mobile-phase composition). A set of 15 calibration samples were randomly prepared, in a concentration range of 0.5–10.5 ng mL−1 for neopterin, biopterin, and pterin; 4.0–8.0 ng mL−1 for xanthopterin; and 0.5–4.5 ng mL−1 for isoxanthopterin. The validation was carried out with fortified urine samples from healthy adults. The optimized conditions were a mobile-phase composition of 10 mM citric buffer at pH 5.44 and acetonitrile (94.5/5.5, v/v), a flow rate of 1.0 mL min−1, and an oven temperature of 25 °C. The detection system consisted of a fast-scanning spectrofluorimeter, which allows obtaining of second-order data matrices containing the fluorescence intensity as a function of retention time and emission wavelength. In this work, MCR-ALS was used to cope with coeluting interferences, on account of the second-order advantage inherent to this algorithm which, in addition, is able to handle data sets deviating from trilinearity, like the high-performance liquid chromatography data analyzed in the present report. The developed approach enabled us to determine five pteridines, some of them with overlapped profiles, reducing the experimental time and reagent consumption. Ratio values for pteridines/creatinine in urine, for infected children with different pathologies, are reported in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scriver RC, Kauffman S, Risensmith KC, Woo SLC (1995) In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New-York, pp 1015–1076

    Google Scholar 

  2. Messahel S, Pheasant AE, Pall H, Ahmed-Choudhury J, Sugum-Paliwal RS, Vostanis P (1988) Neurosci Lett 241:17–20

    Article  Google Scholar 

  3. Muller MM, Curtius H, Herold M, Huber CH (1991) Clin Chim Acta 201:1–16

    Article  CAS  Google Scholar 

  4. Blasko I, Knaus G, Weiss E, Kemmler G, Winkler C, Falkensammer G, Griesmacher A, Wurzmer R, Marksteiner J, Fuchs D (2007) J Psychiatr Res 41:694–701

    Article  Google Scholar 

  5. Han FT, Huynh BH, Shi HL, Lin BC, Ma YF (1999) Anal Chem 71:1265–1269

    Article  CAS  Google Scholar 

  6. Espinosa-Mansilla A, Durán-Merás I, Salinas F (2001) Chromatographia 53:510–514

    Article  Google Scholar 

  7. Durán Merás I, Espinosa-Mansilla A, Rodríguez Gómez MJ (2005) Anal Biochem 346:201–209

    Article  Google Scholar 

  8. Espinosa-Mansilla A, de la Peña AM, Cañada-Cañada F, De Llanos AM (2008) Talanta 77:844–851

    Article  CAS  Google Scholar 

  9. Cañada-Cañada F, Espinosa-Mansilla A, de la Peña AM, Mancha de Llanos A (2009) Anal Chim Acta 468:113–122

    Article  Google Scholar 

  10. Tomaudl J, Talloya J, Tomandlova M, Palyza V (2003) J Sep Sci 26:674–678

    Article  Google Scholar 

  11. Novakova L, Kaufmannova I, Janska R (2010) J Sep Sci 33:765–772

    Article  CAS  Google Scholar 

  12. Espinosa-Mansilla A, Durán Meras I, Salinas F (1998) J Pharm Biomed Anal 17:1325–1334

    Article  CAS  Google Scholar 

  13. Espinosa-Mansilla A, Durán-Merás I, Galian R (2001) Appl Spectrosc 55:701–707

    Article  CAS  Google Scholar 

  14. Jiménez Girón A, Durán Merás I, de la Peña AM, Espinosa Mansilla A, Cañada Cañada F, Olivieri AC (2008) Anal Bioanal Chem 391:827–835

    Article  Google Scholar 

  15. Jiménez Girón A, Durán Merás I, Espinosa Mansilla A, de la Peña AM, Cañada Cañada F, Olivieri AC (2008) Anal Chim Acta 622:94–103

    Article  Google Scholar 

  16. Booksh KS, Kowalski BR (1994) Anal Chem 66:782A–791A

    Article  CAS  Google Scholar 

  17. Daszykowski M, Walczak B (2006) Trends Anal Chem 25:1081–1096

    Article  CAS  Google Scholar 

  18. De Juan A, Tauler R (2003) Anal Chim Acta 500:195–210

    Article  Google Scholar 

  19. Gil García MD, Culzoni MJ, De Zan MM, Santiago Valverde R, Martínez Galera M, Goicoechea HC (2008) J Chromatogr A 1179:115–124

    Article  Google Scholar 

  20. De Zan MM, Gil García MD, Siano RG, Goicoechea HC, Galera MM (2008) J Chromatogr A 1179:106–114

    Article  Google Scholar 

  21. Martínez Galera M, Gil García MD, Culzoni MJ, Goicoechea HC (2010) J Chromatogr A 1217:2042–2049

    Article  Google Scholar 

  22. Culzoni MJ, Schenone AV, Llamas NE, Garrido M, Di Nezio MS, Fernández Band BS, Goicoechea HC (2009) J Chromatogr A 1216:7063–7070

    Article  CAS  Google Scholar 

  23. Appellof CJ, Davidson ER (1981) Anal Chem 53:2053–2056

    Article  CAS  Google Scholar 

  24. Beltrán JL, Guiteras J, Ferrer R (1998) Anal Chem 70:1949–1955

    Article  Google Scholar 

  25. Ferrer R, Guiteras J, Beltrán JL (1997) J Chromatogr A 779:123–130

    Article  CAS  Google Scholar 

  26. Gimeno RA, Beltrán JL, Marcé RM, Borrull F (2000) J Chromatogr A 890:289–294

    Article  CAS  Google Scholar 

  27. Cañada-Cañada F, Arancibia JA, Escandar GM, Ibáñez GA, Espinosa Mansilla A, de la Peña AM, Olivieri AC (2009) J Chromatogr A 1216:4868–4876

    Article  Google Scholar 

  28. Bortolato SA, Arancibia JA, Escandar GM (2009) Anal Chem 81:8074–8084

    Article  CAS  Google Scholar 

  29. Derringer G, Suich R (1980) J Qual Technol 12:214–219

    Google Scholar 

  30. Vera Candioti L, Robles JC, Mantovani VE, Goicoechea HC (2006) Talanta 69:140–147

    Article  Google Scholar 

  31. Vera-Candioti L, Culzoni MJ, Olivieri AC, Goicoechea HC (2008) Electrophoresis 29:4527–4537

    Article  CAS  Google Scholar 

  32. Gil García MD, Cañada Cañada F, Culzoni MJ, Vera-Candioti L, Siano GG, Goicoechea HC, Martínez Galera M (2009) J Chromatogr A 1216:5489–5496

    Article  Google Scholar 

  33. Eilers PHC, Currie ID, Durbán M (2006) Comput Stat Data Anal 50:61–76

    Article  Google Scholar 

  34. Peré-Trepart E, Lacorte S, Tauler R (2007) Anal Chim Acta 595:228–237

    Article  Google Scholar 

  35. Escandar GM, Faber NM, Goicoechea HC, de La Peña AM, Olivieri AC, Poppi RJ (2007) Trends Anal Chem 26:752–765

    Article  CAS  Google Scholar 

  36. Winding W, Guilment J (1991) Anal Chem 63:1425–1432

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministerio de Ciencia e Innovación of Spain (Project CTQ2008-06657-C02-01/BQU), cofinanced by the European FEDER funds, CONICET (PIP 112-200801-02988), and Universidad Nacional del Litoral (CAI + D 12-65). Funding from the Junta de Extremadura and European Social Funds (Consolidation Project of Research Group FQM003) is also acknowledged. A. Mancha de Llanos is grateful to the Consejería de Educación y Tecnología de la Junta de Extremadura for a fellowship (DOE 29/06/2006). M.J.C. and H.C.G. are members of the research career from CONICET. The volunteers who provided the urine samples are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Muñoz de la Peña or H. C. Goicoechea.

Additional information

Published in the special issue Chemometrics (VII Colloquium Chemiometricum Mediterraneum) with guest editors Marcelo Blanco, Juan M. Bosque-Sendra, and Luis Cuadros-Rodríguez

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Llanos, A.M., De Zan, M.M., Culzoni, M.J. et al. Determination of marker pteridines in urine by HPLC with fluorimetric detection and second-order multivariate calibration using MCR-ALS. Anal Bioanal Chem 399, 2123–2135 (2011). https://doi.org/10.1007/s00216-010-4071-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4071-3

Keywords

Navigation