Skip to main content
Log in

Sensitive and selective determination of hydrazine using glassy carbon electrode modified with Pd nanoparticles decorated multiwalled carbon nanotubes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A glassy carbon electrode modified with palladium nanoparticles decorated multiwalled carbon nanotubes (GCE/nanoPd-MWCNTs) was fabricated. Incorporation of palladium nanoparticles onto the carbon nantube surface by thermal decomposition of palladium acetate led to the fabrication of a sensor with a significant decrease in hydrazine electrooxidation potential. The sensor exhibited low detection limits, high sensitivity and selectivity, rapid response, and good stability toward hydrazine detection.

SEM images and cyclic voltammograms for a bare GCE, GCE/MWCNTs, and GCE/nanoPd-MWCNTs in the absence (dashed line) and presence (solid line) of 1 mM N2H4. Conditions: supporting electrolyte, phosphate buffer solution (0.1 M and pH 7); scan rate, 50 mVs−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davis WE, Li YT (2008) Anal Chem 80:5449–5453

    Article  CAS  Google Scholar 

  2. Garrod S, Bollard ME, Nichollst AW, Connor SC, Connelly J, Nicholson JK, Holmes E (2005) Chem Res Toxicol 18:115–122

    Article  CAS  Google Scholar 

  3. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  4. Wildgoose GG, Banks CE, Compton RG (2006) Small 2:182–193

    Article  CAS  Google Scholar 

  5. Lin Y, Watson KA, Ghose S, Smith JG, Williams TV, Crooks RE, Cao W, Connell JW (2009) J Phys Chem C 113:14858–14862

    Article  CAS  Google Scholar 

  6. Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) J Mater Chem 17:2679–2694

    Article  CAS  Google Scholar 

  7. Mubeen S, Zhang T, Yoo B, Deshusses MA, Myung NV (2007) J Phys Chem C 111:6321–6327

    Article  CAS  Google Scholar 

  8. Yang CC, Kumar AS, Zen JM (2006) Electroanalysis 18:64–69

    Article  CAS  Google Scholar 

  9. Wang Z, Zhu ZZ, Li YX, Li HL (2008) Chin J Chem 26:666–670

    Article  CAS  Google Scholar 

  10. Selvaraj V, Grace AN, Alagar M (2009) J Colloid Interface Sci 333:254–262

    Article  CAS  Google Scholar 

  11. Meng L, Jin J, Yang GX, Lu TH, Zhang H, Cai CX (2009) Anal Chem 81:7271–7280

    Article  CAS  Google Scholar 

  12. Cui GF, Song SQ, Shen PK, Kowal A, Bianchini C (2009) J Phys Chem C 113:15639–15642

    Article  CAS  Google Scholar 

  13. Long C, Guangzhi H, Guojun Z, Shijun S, Xiaolai W (2009) Electrochem Commun 11:504–507

    Article  Google Scholar 

  14. Dong B, He BL, Huang J, Gao GY, Yang Z, Li HL (2008) J Power Sources 175:266–271

    Article  CAS  Google Scholar 

  15. Zhang HJ, Huang JS, Hou HQ, You TY (2009) Electroanalysis 21:1869–1874

    Article  Google Scholar 

  16. Batchelor-McAuley C, Banks CE, Simm AO, Jones TGJ, Compton RG (2006) Analyst 131:106–110

    Article  CAS  Google Scholar 

  17. Ji XB, Banks CE, Holloway AF, Jurkschat K, Thorogood CA, Wildgoose GG, Compton RG (2006) Electroanalysis 18:2481–2485

    Article  CAS  Google Scholar 

  18. Yang CC, Kumar AS, Kuo MC, Chien SH, Zen JM (2005) Anal Chim Acta 554:66–73

    Article  CAS  Google Scholar 

  19. Shen Y, Xu Q, Gao H, Zhu NN (2009) Electrochem Commun 11:1329–1332

    Article  CAS  Google Scholar 

  20. Lin Y, Watson KA, Fallbach MJ, Ghose S, Smith JG, Delozier DM, Cao W, Crooks RE, Connell JW (2009) ACS Nano 3:871–884

    Article  CAS  Google Scholar 

  21. Chen G, Wang ZY, Yang T, Huang DD, Xia DG (2006) J Phys Chem B 110:4863–4868

    Article  CAS  Google Scholar 

  22. Guerin S, Attard GS (2001) Electrochem Commun 3:544–548

    Article  CAS  Google Scholar 

  23. Maleki N, Safavi A, Farjami E, Tajabadi F (2008) Anal Chim Acta 611:151–155

    Article  CAS  Google Scholar 

  24. Harrison JA, Khan ZA (1970) J Electroanal Chem 26:1–11

    Article  CAS  Google Scholar 

  25. Bard AJ, Faulkner LR (eds) (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  26. Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Sensor Actuators B Chem 133:462–466

    Article  Google Scholar 

  27. Baron R, Sljukic B, Salter C, Crossley A, Compton RG (2007) Electroanalysis 19:1062–1068

    Article  CAS  Google Scholar 

  28. Jena BK, Raj CR (2007) J Phys Chem C 111:6228–6232

    Article  CAS  Google Scholar 

  29. Li J, Lin X (2007) Sensor Actuators B Chem 126:527–535

    Article  Google Scholar 

  30. Zare HR, Nasirizadeh N (2007) Electrochim Acta 52:4153–4160

    Article  CAS  Google Scholar 

  31. Zare HR, Sobhani Z, Mazloum-Ardakani M (2007) J Solid State Electrochem 11:971–979

    Article  CAS  Google Scholar 

  32. Ojani R, Raoof JB, Norouzi B (2008) Electroanalysis 20:1378–1382

    Article  CAS  Google Scholar 

  33. Quintino MSM, Araki K, Toma HE, Angnes L (2008) Talanta 74:730–735

    Article  CAS  Google Scholar 

  34. Salimi A, Miranzadeh L, Hallaj R (2008) Talanta 75:147–156

    CAS  Google Scholar 

  35. Fang B, Shen RX, Zhang W, Wang GF, Zhang CH (2009) Microchim Acta 165:231–236

    Article  CAS  Google Scholar 

  36. Fang B, Zhang C, Zhang W, Wang G (2009) Electrochim Acta 55:178–182

    Article  CAS  Google Scholar 

  37. Umar A, Rahman MM, Hahn Y-B (2009) Talanta 77:1376–1380

    Article  CAS  Google Scholar 

  38. Wang GF, Gu AX, Wang W, Wei Y, Wu JJ, Wang GZ, Zhang XJ, Fang B (2009) Electrochem Commun 11:631–634

    Article  CAS  Google Scholar 

  39. Wang C, Zhang L, Guo ZH, Xu JG, Wang HY, Zhai KF, Zhuo X (2010) Microchim Acta 169:1–6

    Article  CAS  Google Scholar 

  40. Hu G, Zhou Z, Guo Y, Hou H, Shao S (2010) Electrochem Commun 12:422–426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Institute for Advanced Studies in Basic Science (IASBS, grant no. G2010IASBS119) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Haghighi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghighi, B., Hamidi, H. & Bozorgzadeh, S. Sensitive and selective determination of hydrazine using glassy carbon electrode modified with Pd nanoparticles decorated multiwalled carbon nanotubes. Anal Bioanal Chem 398, 1411–1416 (2010). https://doi.org/10.1007/s00216-010-4049-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4049-1

Keywords

Navigation