Skip to main content
Log in

Ability of a salivary intrinsically unstructured protein to bind different tannin targets revealed by mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Astringency is thought to result from the interaction between salivary proline-rich proteins (PRP) that belong to the intrinsically unstructured protein group (IUP), and tannins, which are phenolic compounds. IUPs have the ability to bind several and/or different targets. At the same time, tannins have different chemical features reported to contribute to the sensation of astringency. The ability of both electrospray ionization mass spectrometry and tandem mass spectrometry to investigate the noncovalent interaction occurring between a human salivary PRP, IB5, and a model tannin, epigallocatechin 3-O-gallate (EgCG), has been reported. Herein, we extend this method to study the effect of tannin chemical features on their interaction with IB5. We used five model tannins, epigallocatechin (EgC), epicatechin 3-O-gallate (ECG), epigallocatechin 3-O-gallate (EgCG), procyanidin dimer B2 and B2 3′-O-gallate, which cover the main tannin chemical features: presence of a gallate moiety (galloylation), the degree of polymerization, and the degree of B ring hydroxylation. We show the ability of IB5 to bind these tannins. We report differences in stoichiometries and in stability of the IB5•1 tannin complexes. These results demonstrate the main role of hydroxyl groups in these interactions and show the involvement of hydrogen bonds. Finally, these results are in line with sensory analysis, by Vidal et al. (J Sci Food Agric 83:564–573, 2003) pointing out that the chain length and the level of galloylation are the main factors affecting astringency perception.

CID MS/MS approach to monitor the stability of noncovalent complexes between a human salivary proline-rich protein and model tannins that cover the main chemical features of tannins

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CID:

Collision-induced dissociation

EgC:

Epigallocatechin

ECG:

Epicatechin gallate

EgCG:

Epigallocatechin gallate

B2 3′-OG:

B2 3′-O-gallate

ESI:

Electrospray ionization

IUP:

Intrinsically unstructured protein

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

PRP:

Proline-rich protein

bPRP:

Basic proline-rich protein

aPRP:

Acidic proline-rich protein

Q-TOF:

Quadrupole/time-of-flight

T:

Tannin

UGT:

Ungalloylated tannin

GT:

Galloylated tannin

M:

Monomer

GM:

Galloylated monomer

D:

Dimer

GD:

Galloylated dimer

DP:

Degree of polymerization

References

  1. Dyson HJ, Wright PE (2005) Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  Google Scholar 

  2. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Curr Opin Struct Biol 18:756–764

    Article  CAS  Google Scholar 

  3. Tompa P (2003) J Mol Struc (Theochem):361-371

  4. Wright PE, Dyson HJ (1999) J Mol Biol 293:321–331

    Article  CAS  Google Scholar 

  5. Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G, Teplow DB, Shea J-E, Ruotolo BT, Robinson CV, Bowers MT (2009) Nat Chem 1:326–331

    Article  CAS  Google Scholar 

  6. Murray MM, Bernstein SL, Nyugen V, Condron MM, Teplow DB, Bowers MT (2009) J Am Chem Soc 131:6316–6317

    Article  CAS  Google Scholar 

  7. Loo JA, Ogorzalek-Loo RR (1997) In: Cole RB (ed) Electrospray ionization mass spectrometry of peptides and proteins. Wiley, New York

  8. Pramanik BN, Bartner PL, Mirza UA, Liu YH, Ganguly AK (1998) J Mass Spectrom 33:911–920

    Article  CAS  Google Scholar 

  9. Jorgensen TJD, Roepstorff P, Heck AJR (1998) Anal Chem 70:4427–4432

    Article  CAS  Google Scholar 

  10. Kapur A, Beck JL, Brown SE, Dixon NE, Sheil MM (2002) Protein Sci 11:147–157

    Article  CAS  Google Scholar 

  11. Bligh SWA, Haley T, Lowe PN (2003) J Mol Recognit 16:139–148

    Article  CAS  Google Scholar 

  12. Sobott F, McCammon MG, Robinson CV (2003) Int J Mass Spectrom Ion Processes 230:193–200

    CAS  Google Scholar 

  13. Jorgensen TJD, Hvelplund P, Andersen JU, Roepstorff P (2002) Int J Mass Spectrom Ion Processes 219:659–670

    CAS  Google Scholar 

  14. Mehansho H, Butler LG, Carlson DM (1987) Annu Rev Nutr 7:423–440

    Article  CAS  Google Scholar 

  15. Bennick A (2002) Crit Rev Oral Biol Med 13:184–196

    Article  Google Scholar 

  16. Carlson DM (1993) Crit Rev Oral Biol Med 4:495–502

    CAS  Google Scholar 

  17. Sarni-Manchado P, Canals-Bosch J, Mazerolles G, Cheynier V (2008) J Agric Food Chem 56:9563–9569

    Article  CAS  Google Scholar 

  18. Sarni-Manchado P, Cheynier V, Moutounet M (1999) J Agric Food Chem 47:42–47

    Article  CAS  Google Scholar 

  19. Mehansho H, Carlson DM (1983) J Biol Chem 258:6616–6620

    CAS  Google Scholar 

  20. Mehansho H, Clements S, Sheares BT, Smith S, Carlson DM (1985) J Biol Chem 260:4418–4423

    CAS  Google Scholar 

  21. Mole S, Butler LG, Iason G (1990) Biochem Syst Ecol 18:287–293

    Article  CAS  Google Scholar 

  22. Asquith TN, Uhlig J, Mehansho H, Putnam L, Carlson DM, Butler L (1987) J Agric Food Chem 35:331–334

    Article  CAS  Google Scholar 

  23. Austin PJ, Suchar LA, Robbins CT, Hagerman AE (1989) J Chem Ecol 15:1335–1347

    Article  CAS  Google Scholar 

  24. McArthur C, Sanson GD, Beal AM (1995) J Chem Ecol 21:663–691

    Article  CAS  Google Scholar 

  25. Dixon R, Xie D, Sharma S (2005) New Phytol 165:9–28

    Article  CAS  Google Scholar 

  26. Zucker WV (1983) Am Nat 121:335–365

    Article  CAS  Google Scholar 

  27. Vidal S, Francis L, Guyot S, Marnet N, Kwiatkowski M, Gawel R, Cheynier V, Waters EJ (2003) J Sci Food Agric 83:564–573

    Article  CAS  Google Scholar 

  28. Poncet-Legrand C, Edelmann A, Putaux J-L, Cartalade D, Sarni-Manchado P, Vernhet A (2006) Food Hydrocoll 20:687–697

    Article  CAS  Google Scholar 

  29. Sarni-Manchado P, Cheynier V (2002) J Mass Spectrom 37:609–616

    Article  CAS  Google Scholar 

  30. Charlton AJ, Baxter NJ, Lilley TH, Haslam E, McDonald CJ, Williamson MP (1996) FEBS Lett 382:289–292

    Article  CAS  Google Scholar 

  31. Canon F, Paté F, Meudec E, Marlin T, Cheynier V, Giuliani A, Sarni-Manchado P (2009) Anal and Bioanal Chem 395:2535–2545

    Google Scholar 

  32. Jobstl E, O'Connell J, Fairclough JPA, Williamson MP (2004) Biomacromolecules 5:942–949

    Article  Google Scholar 

  33. Ricardo da Silva JM, Rigaud J, Cheynier V, Cheminat A, Moutounet M (1991) Phytochemistry 30:1259–1264

    Article  CAS  Google Scholar 

  34. Pascal C, Bigey F, Ratomahenina R, Boze H, Moulin G, Sarni-Manchado P (2006) Protein Expr Purif 47:524–532

    Article  CAS  Google Scholar 

  35. Yin S, Xie Y, Loo JA (2008) J Am Soc Mass Spectrom 19:1199–1208

    Article  CAS  Google Scholar 

  36. Haller I, Mirza UA, Chait BT (1996) J Am Soc Mass Spectrom 7:677–681

    Article  CAS  Google Scholar 

  37. Robinson CV (2001) J Am Soc Mass Spectrom 12:126–126

    Article  CAS  Google Scholar 

  38. Zhang J, Kashket S (1998) Caries Res 32:233–238

    Article  CAS  Google Scholar 

  39. Jørgensen TJD, Delforge D, Remacle J, Bojesen G, Roepstorff P (1999) Int J Mass Spectrom Ion Processes 188:63–85

    Google Scholar 

  40. Wan KX, Gross ML, Shibue T (2000) J Am Soc Mass Spectrom 11:450–457

    Article  CAS  Google Scholar 

  41. Akashi S, Osawa R, Nishimura Y (2005) J Am Soc Mass Spectrom 16:116–125

    Article  CAS  Google Scholar 

  42. Flanzy C (1998) Oenologie—Fondements scientifiques et technologiques. Lavoisier, Paris

    Google Scholar 

  43. Champagnol F (1986) Rev Fr Oenol 26:26–57

    Google Scholar 

  44. Shimada T (2006) J Chem Ecol 32:1149–1163

    Article  CAS  Google Scholar 

  45. Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) J Mol Biol 338:1015–1026

    Article  CAS  Google Scholar 

  46. Oldfield C, Meng J, Yang J, Yang MQ, Uversky V, Dunker AK (2008) BMC Genomics 9:S1

    Article  Google Scholar 

  47. Mehansho H, Hagerman A, Clements S, Butler LG, Rogler JC, Carlson DM (1983) Proc Natl Acad Sci USA 80:3948–3952

    Article  CAS  Google Scholar 

  48. Boze H, Marlin T, Durand D, Pérez J, Vernhet A, Canon F, Sarni-Manchado P, Cheynier V, Cabane B (2010) Biophys J 99:656–665

    Google Scholar 

  49. Tompa P (2003) BioEssays 25:847–855

    Article  CAS  Google Scholar 

  50. Khalsa-Moyers G, McDonald WH (2006) Brief Funct Genomic Proteomic 5:98–111

    Article  CAS  Google Scholar 

  51. Chen Y-LC JM, Collings BA, Konermann L, Douglas DJ (1998) Rapid Commun Mass Spectrom 12:1003–1010

    Article  Google Scholar 

  52. Wright PE, Dyson HJ (2009) Curr Opin Struct Biol 19:31–38

    Google Scholar 

  53. Robinson CV, Chung EW, Kragelund BB, Knudsen J, Aplin RT, Poulsen FM, Dobson CM (1996) J Am Chem Soc 118:8646–8653

    Article  CAS  Google Scholar 

  54. Sobott FM, McCammon MG, Hernández H, Robinson CV (2005) Phil Trans R Soc A 363:379–391

    Article  CAS  Google Scholar 

  55. Simon C, Barathieu K, Laguerre M, Schmitter JM, Fouquet E, Pianet I, Dufourc EJ (2003) Biochemistry 42:10385–10395

    Article  CAS  Google Scholar 

  56. Hagerman AE (1989) In: Hemingway RW, Karchesy JJ (eds) Chemistry of tannin–protein complexation. Plenum, New York

    Google Scholar 

  57. Bacon JR, Rhodes MJC (1998) J Agric Food Chem 46:5083–5088

    Article  CAS  Google Scholar 

  58. Poncet-Legrand C, Gautier C, Cheynier V, Imberty A (2007) J Agric Food Chem 55:9235–9240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Véronique Cheynier for helpful scientific discussions, Thérèse Marlin for protein purification, Jean-Paul Mazauric for tannin purification and Emmanuelle Meudec for mass spectrometry assistance. Francis Canon was supported by a grant of French Ministry of Research. This work is supported by grant 07-BLAN-0279 from the French Agence Nationale de la Recherche (A.N.R.). We acknowledge synchrotron SOLEIL and thank all staff for assistance in using beamline DISCO. AG thanks ABSciex (Les Ullis, France) for the loan of the IonCooler Guide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Sarni-Manchado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canon, F., Giuliani, A., Paté, F. et al. Ability of a salivary intrinsically unstructured protein to bind different tannin targets revealed by mass spectrometry. Anal Bioanal Chem 398, 815–822 (2010). https://doi.org/10.1007/s00216-010-3997-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3997-9

Keywords

Navigation