Skip to main content
Log in

Llama-derived single-domain antibodies for the detection of botulinum A neurotoxin

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Single-domain antibodies (sdAb) specific for botulinum neurotoxin serotype A (BoNT A) were selected from an immune llama phage display library derived from a llama that was immunized with BoNT A toxoid. The constructed phage library was panned using two methods: panning on plates coated with BoNT A toxoid (BoNT A Td) and BoNT A complex toxoid (BoNT Ac Td) and panning on microspheres coupled to BoNT A Td and BoNT A toxin (BoNT A Tx). Both panning methods selected for binders that had identical sequences, suggesting that panning on toxoided material may be as effective as panning on bead-immobilized toxin for isolating specific binders. All of the isolated binders tested were observed to recognize bead-immobilized BoNT A Tx in direct binding assays, and showed very little cross-reactivity towards other BoNT serotypes and unrelated protein. Sandwich assays that incorporated selected sdAb as capture and tracer elements demonstrated that all of the sdAb were able to recognize soluble (“live”) BoNT A Tx and BoNT Ac Tx with virtually no cross-reactivity with other BoNT serotypes. The isolated sdAb did not exhibit the high degree of thermal stability often associated with these reagents; after the first heating cycle most of the binding activity was lost, but the portion of the protein that did refold and recover antigen-binding activity showed only minimal loss on subsequent heating and cooling cycles. The binding kinetics of selected binders, assessed by both an equilibrium fluid array assay as well as surface plasmon resonance (SPR) using toxoided material, gave dissociation constants (K D ) in the range 2.2 × 10−11 to 1.6 × 10−10 M. These high-affinity binders may prove beneficial to the development of recombinant reagents for the rapid detection of BoNT A, particularly in field screening and monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gill DM (1982) Bacterial toxins—a table of lethal amounts. Microbiol Rev 46(1):86–94

    Google Scholar 

  2. Montecucco C, Molgo J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5(3):274–279

    Article  CAS  Google Scholar 

  3. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O'Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K, Biodefense WGC (2001) Botulinum toxin as a biological weapon—medical and public health management. JAMA 285(8):1059–1070

    Google Scholar 

  4. Woodruff BA, Griffin PM, Mccroskey LM, Smart JF, Wainwright RB, Bryant RG, Hutwagner LC, Hatheway CL (1992) Clinical and laboratory comparison of botulism from toxin type A, type B, and type E in the United States, 1975–1988. J Infect Dis 166(6):1281–1286

    Google Scholar 

  5. Sharma SK, Whiting RC (2005) Methods for detection of Clostridium botulinum toxin in foods. J Food Prot 68(6):1256–1263

    Google Scholar 

  6. Schantz EJ, Kautter DA (1978) Standardized assay for Clostridium botulinum toxins. J AOAC 61(1):96–99

    Google Scholar 

  7. Gessler F, Hampe K, Schmidt M, Bohnel H (2006) Immunomagnetic beads assay for the detection of botulinum neurotoxin types C and D. Diagn Microbiol Infect Dis 56(3):225–232

    Article  CAS  Google Scholar 

  8. Sharma SK, Ferreira JL, Eblen BS, Whiting RC (2006) Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl Environ Microbiol 72(2):1231–1238

    Google Scholar 

  9. Shriverlake LC, Ogert RA, Ligler FS (1993) A fiberoptic evanescent-wave immunosensor for large molecules. Sens Actuators B 11(1–3):239–243

    Google Scholar 

  10. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377(3):469–477

    Article  CAS  Google Scholar 

  11. Sapsford KE, Taitt CR, Loo N, Ligler FS (2005) Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl Environ Microbiol 71(9):5590–5592

    Article  CAS  Google Scholar 

  12. Rivera VR, Gamez FJ, Keener WK, White JA, Poli MA (2006) Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal Biochem 353(2):248–256

    Google Scholar 

  13. Vermeer AWP, Norde W (2000) The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J 78(1):394–404

    Article  CAS  Google Scholar 

  14. Hayhurst A, Georgiou G (2001) High-throughput antibody isolation. Curr Opin Chem Biol 5(6):683–689

    Article  CAS  Google Scholar 

  15. Perez JMJ, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, Darbon H, Frenken LGJ (2001) Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry 40(1):74–83

    Article  CAS  Google Scholar 

  16. Ghahroudi MA, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3):521–526

    Article  Google Scholar 

  17. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LGJ, Muyldermans S, Wyns L, Matagne A (2002) Single-domain antibody fragments with high conformational stability. Protein Sci 11(3):500–515

    Article  CAS  Google Scholar 

  18. Hamerscasterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally-occurring antibodies devoid of light-chains. Nature 363(6428):446–448

    Article  CAS  Google Scholar 

  19. van der Linden RHJ, Frenken LGJ, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT (1999) Comparison of physical chemical properties of llama V-HH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta Prot Struct Mol Enzymol 1431(1):37–46

    Article  Google Scholar 

  20. Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, Cauerhff A, Danquah W, Rissiek B, Scheuplein F, Schwarz N, Adriouch S, Boyer O, Seman M, Licea A, Serreze DV, Goldbaum FA, Haag F, Koch-Nolte F (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198(3):157–174

    Article  CAS  Google Scholar 

  21. Muyldermans S, Baral TN, Retarnozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, Rothbauer U, Stijemans B, Tillib S, Wernery U, Wyns L, Hassanzadeh-Ghassabeh G, Saerens D (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128(1–3):178–183

    Article  CAS  Google Scholar 

  22. Anderson GP, Liu JL, Hale ML, Bernstein RD, Moore M, Swain MD, Goldman ER (2008) Development of antiricin single domain antibodies toward detection and therapeutic reagents. Anal Chem 80(24):9604–9611

    Article  CAS  Google Scholar 

  23. Goldman ER, Anderson GP, Conway J, Sherwood LJ, Fech M, Vo B, Liu JL, Hayhurst A (2008) Thermostable llama single domain antibodies for detection of botulinum a neurotoxin complex. Anal Chem 80(22):8583–8591

    Article  CAS  Google Scholar 

  24. Conway JO, Sherwood LJ, Collazo MT, Garza JA, Hayhurst A (2010) Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. PLoS One 5(1)

  25. Thanongsaksrikul J, Srimanote P, Maneewatch S, Choowongkomon K, Tapchaisri P, Makino S, Kurazono H, Chaicumpa W (2010) A VHH that neutralizes the zinc metalloproteinase activity of botulinum neurotoxin type A. J Biol Chem 285(13):9657–9666

    Article  CAS  Google Scholar 

  26. Dong JB, Thompson AA, Fan YF, Lou JL, Conrad F, Ho MF, Pires-Alves M, Wilson BA, Stevens RC, Marks JD (2010) A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region. J Mol Biol 397(4):1106–1118

    Article  CAS  Google Scholar 

  27. van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, Verrips T, Frenken L (2000) Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J Immunol Meth 240(1–2):185–195

    Article  Google Scholar 

  28. Goldman ER, Anderson GP, Liu JL, Delehanty JB, Sherwood LJ, Osborn LE, Cummins LB, Hayhurst A (2006) Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem 78(24):8245–8255

    Article  CAS  Google Scholar 

  29. Corpet F (1988) Multiple sequence alignment with hierarchical-clustering. Nucleic Acids Res 16(22):10881–10890

    Article  CAS  Google Scholar 

  30. Anderson GP, Ortiz-Vera YA, Hayhurst A, Czarnecki J, Dabbs J, Vo BH, Goldman ER (2008) Evaluation of llama anti-botulinum toxin heavy chain antibody. Botulinum J 1:100–115

    Google Scholar 

  31. Anderson GP, Matney R, Liu JL, Hayhurst A, Goldman ER (2007) Multiplexed fluid array screening of phage displayed anti-ricin single domain antibodies for rapid assessment of specificity. Biotechniques 43(6):806–811

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Marla D. Swain is a National Research Council (NRC) Postdoctoral Fellow. We thank Tetracore Inc for providing the monoclonal anti-BoNT B antibody. This work was supported by JSTO-CBD/DTRA Project # 8.10033_07_NRL_B, JSTO-CBD/DTRA Contract # HDTRA 1-07-C-0018 and NIH construction grant C06 RR012087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen R. Goldman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, M.D., Anderson, G.P., Zabetakis, D. et al. Llama-derived single-domain antibodies for the detection of botulinum A neurotoxin. Anal Bioanal Chem 398, 339–348 (2010). https://doi.org/10.1007/s00216-010-3905-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3905-3

Keywords

Navigation