Skip to main content

Advertisement

Log in

Microarray-based amplification and detection of RNA by nucleic acid sequence based amplification

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nucleic acid sequence based amplification (NASBA) is a versatile in vitro nucleic acid amplification method. In this work, RNA amplification and labeling by NASBA and microarray analysis are combined in a one-step process. The NASBA reaction is performed in direct contact with capture probes. These probes are bound to surface-attached hydrogel spots generated at the chip surfaces by using a simple printing and UV irradiation process. Five gene expression and SNP parameters with known relevance in breast cancer diagnostics were chosen to demonstrate that multiplex NASBA-on-microarray analysis is possible. A minimum amount of 10 pg of total RNA was shown to be sufficient for the detection of the reference parameter RPS18, which demonstrates that the detection limit of the microarray-based NASBA assays theoretically allows single-cell assays to be performed.

The nucleic acid sequence based amplification (NASBA) reaction taking place on top of a microarray. a: During the NASBA process, biotinylated antisense RNA is produced. b: Hybridization of these amplicons with their immobilized capture probes occurs during amplification. Capture probes are immobilized within spots of a surface-attached hydrogel, arranged in a microarray. Each spot potentially represents a different capture probe. ds cDNA doubled-stranded complementary DNA, PMMA polymethylmethacrylate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Science 230:1350–1354

    Article  CAS  Google Scholar 

  2. Compton J (1991) Nature 350:91–92

    Article  CAS  Google Scholar 

  3. Zhao Y, Park S, Kreiswirth BN, Ginocchio CC, Veyret R, Laayoun A, Troesch A, Perlin DS (2009) J Clin Microbiol 47:2067–2078

    Article  CAS  Google Scholar 

  4. Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, Hermsen R, Sauerwein R (2005) J Clin Microbiol 43:402–405

    Article  CAS  Google Scholar 

  5. Heim A, Grumbach IM, Zeuke S, Top B (1998) Nucleic Acids Res 26:2250–2251

    Article  CAS  Google Scholar 

  6. Lamy PJ, Verjat T, Paye M, Servanton AC, Grenier J, Leissner P, Mougin B (2006) Clin Chem Lab Med 44:3–12

    Article  CAS  Google Scholar 

  7. Deiman B, van Aarle P, Sillekens P (2002) Mol Biotechnol 20:163–179

    Article  CAS  Google Scholar 

  8. Casper ET, Patterson SS, Smith MC, Paul JH (2005) J Virol Methods 124:149–155

    Article  CAS  Google Scholar 

  9. Morisset D, Dobnik D, Hamels S, Zel J, Gruden K (2008) Nucleic Acids Res 36:e118

    Article  Google Scholar 

  10. Scheler O, Glynn B, Parkel S, Palta P, Toome K, Kaplinski L, Remm M, Maher M, Kurg A (2009) BMC Biotechnol 9:45

    Article  Google Scholar 

  11. Hoheisel JD (2006) Nat Rev Genet 7:200–210

    Article  CAS  Google Scholar 

  12. Livesey FJ (2003) Brief Funct Genomic Proteomic 2:31–36

    Article  CAS  Google Scholar 

  13. Pritchard C, Underhill P, Greenfield A (2008) Methods Mol Biol 461:605–629

    Article  CAS  Google Scholar 

  14. Zhang C, Xing D (2007) Nucleic Acids Res 35:4223–4237

    Article  CAS  Google Scholar 

  15. Chen L, Manz A, Day PJ (2007) Lab Chip 7:1413–1423

    Article  CAS  Google Scholar 

  16. Christensen TB, Pedersen CM, Grondhal KG, Jensen TG, Sekulovic A, Bang DD, Wolff A (2007) J Micromech Microeng 17:1527–1532

    Article  CAS  Google Scholar 

  17. Furuberg L, Mielnik M, Gulliksen A, Solli L, Johansen IR, Voitel J, Baier T, Riegger L, Karlsen F (2008) Microsyst Technol Micro Nanosyst Inf Storage Process Syst 14:673–681

    CAS  Google Scholar 

  18. Gulliksen A, Solli L, Karlsen F, Rogne H, Hovig E, Nordstrom T, Sirevag R (2004) Anal Chem 76:9–14

    Article  CAS  Google Scholar 

  19. Dimov IK, Garcia-Cordero JL, O'Grady J, Poulsen CR, Viguier C, Kent L, Daly P, Lincoln B, Maher M, O'Kennedy R, Smith TJ, Ricco AJ, Lee LP (2008) Lab Chip 8:2071–2078

    Article  CAS  Google Scholar 

  20. Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S, Baynes C, Ponder BA, Chanock S, Lissowska J, Brinton L, Peplonska B, Southey MC, Hopper JL, McCredie MR, Giles GG, Fletcher O, Johnson N, dos Santos Silva I, Gibson L, Bojesen SE, Nordestgaard BG, Axelsson CK, Torres D, Hamann U, Justenhoven C, Brauch H, Chang-Claude J, Kropp S, Risch A, Wang-Gohrke S, Schurmann P, Bogdanova N, Dork T, Fagerholm R, Aaltonen K, Blomqvist C, Nevanlinna H, Seal S, Renwick A, Stratton MR, Rahman N, Sangrajrang S, Hughes D, Odefrey F, Brennan P, Spurdle AB, Chenevix-Trench G, Beesley J, Mannermaa A, Hartikainen J, Kataja V, Kosma VM, Couch FJ, Olson JE, Goode EL, Broeks A, Schmidt MK, Hogervorst FB, Van’t Veer LJ, Kang D, Yoo KY, Noh DY, Ahn SH, Wedren S, Hall P, Low YL, Liu J, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Sigurdson AJ, Stredrick DL, Alexander BH, Struewing JP, Pharoah PD, Easton DF (2007) Nat Genet 39:352–358

    Article  CAS  Google Scholar 

  21. Silva SN, Cabral MN, Bezerra de Castro G, Pires M, Azevedo AP, Manita I, Pina JE, Rueff J, Gaspar J (2006) Oncol Rep 16:781–788

    CAS  Google Scholar 

  22. Dean-Colomb W, Esteva FJ (2008) Eur J Cancer 44:2806–2812

    Article  CAS  Google Scholar 

  23. Buzdar AU (2009) Ann Oncol 20:993–999

    Article  CAS  Google Scholar 

  24. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) BMC Mol Biol 7:3

    Article  Google Scholar 

  25. Rozen S, Skaletsky H (2000) Methods Mol Biol 132:365–386

    CAS  Google Scholar 

  26. Markham NR, Zuker M (2005) Nucleic Acids Res 33:W577–W581

    Article  CAS  Google Scholar 

  27. Brandstetter T, Böhmer S, Prucker O, Bissé E, zur Hausen A, Alt-Mörbe J, Rühe J (2010) J Virol Methods 163:40–48

    Article  CAS  Google Scholar 

  28. Toomey R, Freidank D, Ruhe J (2004) Macromolecules 37:882–887

    Article  CAS  Google Scholar 

  29. Lehr HP, Reimann M, Brandenburg A, Sulz G, Klapproth H (2003) Anal Chem 75:2414–2420

    Article  CAS  Google Scholar 

  30. Molden T, Kraus I, Skomedal H, Nordstrom T, Karlsen F (2007) J Virol Methods 142:204–212

    Article  CAS  Google Scholar 

  31. Fire A, Xu SQ (1995) Proc Natl Acad Sci USA 92:4641–4645

    Article  CAS  Google Scholar 

  32. Ericsson O, Jarvius J, Schallmeiner E, Howell M, Nong RY, Reuter H, Hahn M, Stenberg J, Nilsson M, Landegren U (2008) Nucleic Acids Res 36:e45

    Article  Google Scholar 

  33. Schweitzer B, Roberts S, Grimwade B, Shao W, Wang M, Fu Q, Shu Q, Laroche I, Zhou Z, Tchernev VT, Christiansen J, Velleca M, Kingsmore SF (2002) Nat Biotechnol 20:359–365

    Article  CAS  Google Scholar 

  34. Schweitzer B, Kingsmore S (2001) Curr Opin Biotechnol 12:21–27

    Article  CAS  Google Scholar 

  35. Mayer-Enthart E, Sialelli J, Rurack K, Resch-Genger U, Koster D, Seitz H (2008) Ann N Y Acad Sci 1130:287–292

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the German Research Council (DFG RU 489/15-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Rühe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mader, A., Riehle, U., Brandstetter, T. et al. Microarray-based amplification and detection of RNA by nucleic acid sequence based amplification. Anal Bioanal Chem 397, 3533–3541 (2010). https://doi.org/10.1007/s00216-010-3892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3892-4

Keywords

Navigation