Skip to main content
Log in

Instrumental measurement of bitter taste in red wine using an electronic tongue

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electronic tongue (ET) based on potentiometric chemical sensors was assessed as a rapid tool for the quantification of bitterness in red wines. A set of 39 single cultivar Pinotage wines comprising 13 samples with medium to high bitterness was obtained from the producers in West Cape, South Africa. Samples were analysed with respect to a set of routine wine parameters and major phenolic compounds using Fourier transform infrared-multiple internal reflection spectroscopy (WineScan) and high-performance liquid chromatography, respectively. A trained sensory panel assessed the bitterness intensity of 15 wines, 13 of which had a bitter taste of medium to high intensity. Thirty-one wine samples including seven bitter-tasting ones were measured by the ET. Influence of the chemical composition of wine on the occurrence of the bitter taste was evaluated using one-way analysis of variance. It was found that bitter-tasting wines had higher concentrations of phenolic compounds (catechin, epicatechin, gallic and caffeic acids and quercetin) than non-bitter wines. Sensitivity of the sensors of the array to the phenolic compounds related to the bitterness was studied at different pH levels. Sensors displayed sensitivity to all studied compounds at pH 7, but only to quercetin at pH 3.5. Based on these findings, the pH of wine was adjusted to 7 prior to measurements. Calibration models for classification of wine samples according to the presence of the bitter taste and quantification of the bitterness intensity were calculated by partial least squares-discriminant analysis (PLS-DA) regression. Statistical significance of the classification results was confirmed by the permutation test. Both ET and chemical analysis data could discriminate between bitter and control wines with the correct classification rates of 94% and 91%, respectively. Prediction of the bitterness intensity with good accuracy (root mean square error of 2 and mean relative error of 6% in validation) was possible only using ET data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Noble AC (1994) Physiol Behav 56:1251–1255

    Article  CAS  Google Scholar 

  2. Peleg H, Gacon K, Schlich P, Noble AC (1999) J Sci Food Agric 79:1123–1128

    Article  CAS  Google Scholar 

  3. Vidal S, Francis L, Noble A, Kwiatkowski M, Cheynier V, Waters E (2004) Anal Chim Acta 513:57–65

    Article  CAS  Google Scholar 

  4. Hufnagel JC, Hofmann T (2008) J Agric Food Chem 56:1376–1386

    Article  CAS  Google Scholar 

  5. Hufnagel JC, Hofmann T (2008) J Agric Food Chem 56:9190–9199

    Article  CAS  Google Scholar 

  6. Burns DJW, Noble AC (1985) J Text Stud 16:365–380

    Article  Google Scholar 

  7. Smith AK, June H, Noble AC (1996) Food Qual Pref 7:161–166

    Article  Google Scholar 

  8. Fontoin H, Saucier C, Teissedre P-L, Glories Y (2008) Food Qual Pref 19:286–291

    Article  Google Scholar 

  9. Lesschaeve I, Noble AC (2005) Am J Clin Nutr 81:330S–335S

    CAS  Google Scholar 

  10. Sponholz W-R (1993) In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Philadelphia

    Google Scholar 

  11. Lonvaud-Funel A (2002) Biotransformations: bioremediation technology for health and environmental protection. In: Singh VP, Stapleton RD (eds) Progress in industrial microbiology, vol 36. Elsevier Science, Amsterdam

    Google Scholar 

  12. Garai-Ibabe G, Ibarburu I, Berregi I, Claisse O, Lonvaud-Funel A, Irastorza A, Dueñas MT (2008) Int J Food Microb 121:253–261

    Article  CAS  Google Scholar 

  13. Sauvageot N, Gouffi K, Laplace J-M, Auffray Y (2000) Int J Food Microb 55:167–170

    Article  CAS  Google Scholar 

  14. Peri I, Mamrud-Brains H, Rodin S, Krizhanovsky V, Shai Y, Nir S, Naim M (2000) Am J Physiol Cell Physiol 278:C17–C25

    CAS  Google Scholar 

  15. Ciosek P, Wroblewski W (2007) Analyst 132:963–978

    Article  CAS  Google Scholar 

  16. Legin A, Rudnitskaya A, Vlasov Yu (2003) In: Alegret S (ed) Integrated analytical systems, comprehensive analytical chemistry XXXIX. Elsevier, Amsterdam

    Google Scholar 

  17. Winquist F, Krantz-Rülcker C, Lundström I (2003) In: Pearce TC, Gardner JW, Schiffman SS, Nagle HT (eds) Handbook of machine olfaction. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  18. Tagaki S, Toko K, Wada K, Ohki T (2001) J Pharm Sci 90:2042–2048

    Article  Google Scholar 

  19. Legin A, Rudnitskaya A, Clapham D, Seleznev B, Lord K, Vlasov Yu (2004) Anal Bioanal Chem 380:36–45

    Article  CAS  Google Scholar 

  20. Zheng JY, Keeney MP (2006) J Pharm 310:118–124

    CAS  Google Scholar 

  21. Lorenz JK, Reo J, Hendl O, Worthington JH, Petrossian VD (2009) Int J Pharm 367:65–72

    Article  CAS  Google Scholar 

  22. Fukunaga T, Toko K, Mori S, Nakabayashi Y, Kanda M (1996) Sens Mater 8:47–56

    CAS  Google Scholar 

  23. Kaneda H, Watari J, Takashio M, Okahat Y (2003) J Inst Brew 109:27–33

    CAS  Google Scholar 

  24. Kaneda H, Takashio M, Shinotsuka K, Okahata Y (2001) J Biosci Bioeng 92:221–226

    Article  CAS  Google Scholar 

  25. Rudnitskaya A, Polshin E, Kirsanov D, Lammertyn J, Nicolai B, Saison D, Delvaux FR, Delvaux F, Legin A (2009) Anal Chim Acta 646:111–118

    Article  CAS  Google Scholar 

  26. Apetrei C, Gutierez F, Rodriguez-Mendez ML, de Saja JA (2007) Sens Actuators B 121:567–575

    Article  Google Scholar 

  27. Nieuwoudt HH, Prior BA, Pretorius IS, Manley M, Bauer FF (2004) J Agric Food Chem 52:3726–3735

    Article  CAS  Google Scholar 

  28. Peng Z, Iland RG, Oberholster A, Sefton MA, Waters EJ (2002) Austr J Grape Wine Res 8:70–75

    Article  CAS  Google Scholar 

  29. Revilla E, Ryan J (2000) J Chrom A 881:461–469

    Article  CAS  Google Scholar 

  30. Lee CB, Lawless HT (1991) Chem Sens 16:225–238

    Article  Google Scholar 

  31. Barker M, Rayens W (2003) J Chemometr 17:166–173

    Article  CAS  Google Scholar 

  32. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Metabolomics 4:81–89

    Article  CAS  Google Scholar 

  33. Hernandez T, Estrella I, Perez-Gordo M, Alegria EG, Tenorio C, Ruiz-Larrrea F, Moreno-Arribas MV (2007) J Agric Food Chem 55:5260–5266

    Article  CAS  Google Scholar 

  34. Cabrita MJ, Torres M, Palma V, Alves E, Patao R (2008) Costa Freitas AM. Talanta 74:1281–1286

    Article  CAS  Google Scholar 

  35. Vivas N, Lonvaud-Funel A, Glories Y (1997) Food Microbiol 14:291–300

    Article  CAS  Google Scholar 

  36. Campos FM, Figueiredo AR, Hogg TA, Couto JA (2009) Food Microbiol 26:409–414

    Article  CAS  Google Scholar 

  37. Ito T, Radecka H, Umezawa K, Kimura T, Yashiro A, Ming Lin X, Kataoka M, Kimura E, Sessler JL, Odashima K, Umezawa Y (1998) Anal Sci 14:89–98

    Article  CAS  Google Scholar 

  38. Rudnitskaya A, Delgadillo I, Rocha SM, Costa A-M, Legin A (2006) Anal Chim Acta 563:315–318

    Article  CAS  Google Scholar 

  39. Fontoin H, Saucier C, Rudnitskaya A, Legin A, Teissedre P-L, Glories Y (2007) In the Proceedings of the XXXth World Congress on Vine and Wine, 10–16 June 2007, Budapest, Hungary, p 268

  40. Herrero-Martinez JM, Sanmartin M, Roses M, Bosch E, Rаfols C (2005) Electrophoresis 26:1886–1895

    Article  CAS  Google Scholar 

  41. Borges F, Lima JFLC, Pinto I, Reis S, Siquet C (2003) Helv Chim Acta 86:3081–3087

    Article  CAS  Google Scholar 

  42. Erdemgil FZ, Sanli S, Sanli N, Ozkan G, Barbosa J, Guiteras J, Beltran JL (2007) Talanta 72:489–496

    Article  CAS  Google Scholar 

  43. Reyes LF, Cisneros-Zevallos L (2007) Food Chem 100:885–894

    Article  CAS  Google Scholar 

  44. Sangster J (1997) Octanol-water partition coefficients: fundamentals and physical chemistry 2 of Wiley series in solution chemistry. Wiley, Chichester

    Google Scholar 

  45. Tetko IV, Tanchuk VY (2002) J Chem Inf Comput Sci 42:1136–1145

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the work of A. Rudnitskaya by Pinotage Association, Stellenbosch, South Africa, is kindly acknowledged. Support of this work from F. Calitz (Biometry Unit, ARC Infruitec-Nietvoorbij, Stellenbosch), E. Moelich (Sensory Unit, Department of Food Science, Stellenbosch University) and individual cellars and winemakers is acknowledged. The provision of Pinotage wine through the Pinotage Association, Stellenbosch, South Africa, and L'Avenir Wine Estate, Stellenbosch, South Africa, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa Rudnitskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudnitskaya, A., Nieuwoudt, H.H., Muller, N. et al. Instrumental measurement of bitter taste in red wine using an electronic tongue. Anal Bioanal Chem 397, 3051–3060 (2010). https://doi.org/10.1007/s00216-010-3885-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3885-3

Keywords

Navigation