Skip to main content
Log in

Analysis of protein kinase A activity in insulin-secreting cells using a cell-penetrating protein substrate and capillary electrophoresis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A cell-penetrating, fluorescent protein substrate was developed to monitor intracellular protein kinase A (PKA) activity in cells without the need for cellular transfection. The PKA substrate (PKAS) was prepared with a 6×histidine purification tag, an enhanced green fluorescent protein (EGFP) reporter, an HIV-TAT protein transduction domain for cellular translocation and a pentaphosphorylation motif specific for PKA. PKAS was expressed in Escherichia coli and purified by metal affinity chromatography. Incubation of PKAS in the extracellular media facilitated translocation into the intracellular milieu in HeLa cells, βTC-3 cells and pancreatic islets with minimal toxicity in a time and concentration dependent manner. Upon cellular loading, glucose-dependent phosphorylation of PKAS was observed in both βTC-3 cells and pancreatic islets via capillary zone electrophoresis. In pancreatic islets, maximal PKAS phosphorylation (83 ± 6%) was observed at 12 mM glucose, whereas maximal PKAS phosphorylation (86 ± 4%) in βTC-3 cells was observed at 3 mM glucose indicating a left-shifted glucose sensitivity. Increased PKAS phosphorylation was observed in the presence of PKA stimulators forskolin and 8-Br-cAMP (33% and 16%, respectively), with corresponding decreases in PKAS phosphorylation observed in the presence of PKA inhibitors staurosporine and H-89 (40% and 54%, respectively).

Analysis of PKA activity via chimeric fluorescent kinase substrate proteins

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hunter T (2000) Cell 100:113–127

    Article  CAS  Google Scholar 

  2. Taylor SS, Knighton DR, Zheng JH, Teneyck LF, Sowadski JM (1992) Annu Rev Cell Biol 8:429–462

    Article  CAS  Google Scholar 

  3. Hunter T (1995) Cell 80:225–236

    Article  CAS  Google Scholar 

  4. Renstrom E, Eliasson L, Rorsman P (1997) J Physiol-Lond 502:105–118

    Article  CAS  Google Scholar 

  5. Charles MA, Fanska R, Schmid FG, Forsham PH, Grodsky GM (1973) Science 179:569–571

    Article  CAS  Google Scholar 

  6. Macala LJ, Hayslett JP, Smallwood JI (1998) Kidney Int 54:1746–1750

    Article  CAS  Google Scholar 

  7. McLachlin DT, Chait BT (2001) Curr Opin Chem Biol 5:591–602

    Article  CAS  Google Scholar 

  8. Fang XJ, Yu SX, Lu YL, Bast RC, Woodgett JR, Mills GB (2000) Proc Natl Acad Sci USA 97:11960–11965

    Article  CAS  Google Scholar 

  9. Nagai Y, Miyazaki M, Aoki R, Zama T, Inouye S, Hirose K, Iino M, Hagiwara M (2000) Nat Biotechnol 18:313–316

    Article  CAS  Google Scholar 

  10. Zhang J, Ma YL, Taylor SS, Tsien RY (2001) Proc Natl Acad Sci USA 98:14997–15002

    Article  CAS  Google Scholar 

  11. Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y (2002) Nat Biotechnol 20:287–294

    Article  CAS  Google Scholar 

  12. Zarrine-Afsar A, Krylov SN (2003) Anal Chem 75:3720–3724

    Article  CAS  Google Scholar 

  13. Meredith GD, Sims CE, Soughayer JS, Allbritton NL (2000) Nat Biotechnol 18:309–312

    Article  CAS  Google Scholar 

  14. Quigley WWC, Dovichi NJ (2004) Anal Chem 76:4645–4658

    Article  CAS  Google Scholar 

  15. Dawson JF, Boland MP, Holmes CFB (1994) Anal Biochem 220:340–345

    Article  CAS  Google Scholar 

  16. Li H, Sims CE, Kaluzova M, Stanbridge EJ, Allbritton NL (2004) Biochemistry 43:1599–1608

    Article  CAS  Google Scholar 

  17. Dietz GPH, Bahr M (2004) Mol Cell Neurosci 27:85–131

    Article  CAS  Google Scholar 

  18. Schwarze SR, Hruska KA, Dowdy SF (2000) Trends Cell Biol 10:290–295

    Article  CAS  Google Scholar 

  19. Manceur A, Wu A, Audet J (2007) Anal Biochem 364:51–59

    Article  CAS  Google Scholar 

  20. Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SMV, Newham P, Lindsay MA (2005) Br J Pharmacol 145:1093–1102

    Article  CAS  Google Scholar 

  21. Soughayer JS, Wang Y, Li H, Cheung SH, Rossi FM, Stanbridge EJ, Sims CE, Allbritton NL (2004) Biochemistry 43:8528–8540

    Article  CAS  Google Scholar 

  22. Aspinwall CA, Lakey JRT, Kennedy RT (1999) J Biol Chem 274:6360–6365

    Article  CAS  Google Scholar 

  23. Holm T, Johansson H, Lundberg P, Pooga M, Lindgren M, Langel U (2006) Nat Protoc 1:1001–1005

    Article  CAS  Google Scholar 

  24. Hapuarachchi S, Aspinwall CA (2007) Electrophoresis 28:1100–1106

    Article  CAS  Google Scholar 

  25. Shackman JG, Watson CJ, Kennedy RT (2004) J Chromatogr A 1040:273–282

    Article  CAS  Google Scholar 

  26. Yang F, Liu Y, Bixby SD, Friedman JD, Shokat KM (1999) Anal Biochem 266:167–173

    Article  Google Scholar 

  27. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) J Biol Chem 278:585–590

    Article  CAS  Google Scholar 

  28. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) Science 285:1569–1572

    Article  CAS  Google Scholar 

  29. Tyagi M, Rusnati M, Presta M, Giacca M (2001) J Biol Chem 276:3254–3261

    Article  CAS  Google Scholar 

  30. Efrat S, Linde S, Kofod H, Spector D, Delannoy M, Grant S, Hanahan D, Baekkeskov S (1988) Proc Natl Acad Sci USA 85:9037–9041

    Article  CAS  Google Scholar 

  31. Fittipaldi A, Ferrari A, Arcangeli C, Monica M, Pellegrini V, Beltram F, Giacca M (2003) Mol Ther 7:S372

    Google Scholar 

  32. Thams P, Anwar MR, Capito K (2005) Eur J Endocrinol 152:671–677

    Article  CAS  Google Scholar 

  33. Christie MR, Ashcroft SJH (1984) Biochem J 218:87–99

    CAS  Google Scholar 

  34. Dambra R, Surana M, Efrat S, Starr RG, Fleischer N (1990) Endocrinology 126:2815–2822

    Article  CAS  Google Scholar 

  35. Seamon KB, Padgett W, Daly JW (1981) Proc Natl Acad Sci USA-Biol Sci 78:3363–3367

    Article  CAS  Google Scholar 

  36. Muneyama K, Bauer RJ, Shuman DA, Robins RK, Simon N (1971) Biochemistry 10:2390–2395

    Article  CAS  Google Scholar 

  37. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F (1986) Biochem Biophys Res Commun 135:397–402

    Article  CAS  Google Scholar 

  38. Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Naito K, Toshioka T, Hidaka H (1990) J Biol Chem 265:5267–5272

    CAS  Google Scholar 

  39. Ashcroft SJ, Bassett JM, Randle PJ (1972) Diabetes 21:538–545

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sergey N. Krylov from York University Canada for providing the plasmid for the protein kinase A substrate used for preliminary studies. This work was supported by National Institute of Health (NIH-GM074522) and National Science Foundation (NSF-0548167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Aspinwall.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM. 1

(PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauf, F., Huang, Y., Muhandiramlage, T.P. et al. Analysis of protein kinase A activity in insulin-secreting cells using a cell-penetrating protein substrate and capillary electrophoresis. Anal Bioanal Chem 397, 3359–3367 (2010). https://doi.org/10.1007/s00216-010-3776-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3776-7

Keywords

Navigation