Skip to main content
Log in

Analysis of thyroid hormones in serum by liquid chromatography-tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Thyroid hormones are essential hormones for regulating growth and development in humans and wildlife. Methods to monitor precise and low levels of these hormones in serum and tissues are needed to assess overall health, whether from disease considerations or possibly from environmental contaminant exposures. Common and routine methods typically rely upon radioimmunoassays, which can be expensive, and typically only measure thyroxine and 3,3′,5-triidothyronine, which can be a limitation in fully evaluating impacts on thyroid regulation. In this study we developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the simultaneous analysis of five thyroid hormones—thyroxine, 3,3′,5-triidothyronine, 3,3′,5′-triiodothyronine, 3,3′-diiodothyronine, and 3,5-diiodothyronine—in serum samples. The LC-MS/MS parameters were optimized and calibrated over a wide concentration range (1.0–500 ng/mL) with on-column detection limits of 1.5–7.0 pg. With use of spiked bovine serum samples, the mean method recoveries were calculated to be 81.3–111.9% with relative standard deviations of 1.2–9.6% at spiking levels ranging from 10 to 100 ng/mL. This method was compared with measurements made by standard radioimmunoassays and with measurements made in a serum Standard Reference Material (SRM 1951b). Development of this method expands the capacity to measure thyroid hormones by including a larger suite of thyroid hormones, and has promising applications for measuring catabolism of thyroid hormones in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lum SM, Nicoloff JT, Spencer CA, Kaptein EM (1984) J Clin Invest 73:570–575

    Article  CAS  Google Scholar 

  2. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Endocr Rev 23:38–89

    Article  CAS  Google Scholar 

  3. Kohrle J, Spanka M, Irmscher K, Hesch RD (1988) Prog Clin Biol Res 280:323–340

    CAS  Google Scholar 

  4. Kelly GS (2000) Altern Med Rev 5:306–333

    CAS  Google Scholar 

  5. Goglia F (2005) Biochemistry (Mosc) 70:203–213

    Google Scholar 

  6. Ball SG, Sokolov J, Chin WW (1997) J Mol Endocrinol 19:137–147

    Article  CAS  Google Scholar 

  7. Lanni A, Moreno M, Lombardi A, Goglia F (1996) J Physiol (Lond) 494:831–837

    CAS  Google Scholar 

  8. Horst C, Rokos H, Seitz HJ (1989) Biochem J 261:945–950

    CAS  Google Scholar 

  9. Zoeller RT (2005) Mol Cell Endocrinol 242:10–15

    Article  CAS  Google Scholar 

  10. Legler J (2008) Chemosphere 73:216–222

    Article  CAS  Google Scholar 

  11. Kashiwagi K, Furuno N, Kitamura S, Ohta S, Sugihara K, Utsumi K, Hanada H, Taniguchi K, Suzuki K, Kashiwagi A (2009) J Health Sci 55:147–160

    Article  CAS  Google Scholar 

  12. Ekins R (1990) Endocr Rev 11:5–46

    Article  CAS  Google Scholar 

  13. Midgley JEM (2001) Clin Chem 47:1353–1363

    CAS  Google Scholar 

  14. Stockigt JR (2001) Metab Clin North Am 30:265–289

    Article  CAS  Google Scholar 

  15. Murthy JN, Yatscoff RW, Soldin SJ (1998) Clin Biochem 31:159–163

    Article  CAS  Google Scholar 

  16. Soldin SJ, Steele BW, Witte DL, Wang E, Elin RJ (2003) Arch Pathol Lab Med 127:19–22

    CAS  Google Scholar 

  17. Ekins R, Midgley JEM, Moon CR, Wilkins TA (1987) Clin Chem 33:2137–2152

    CAS  Google Scholar 

  18. Sapin R, d’Herbomez M (2003) Clin Chem 49:1531–1535

    Article  CAS  Google Scholar 

  19. Steele BW, Wang EW, Klee GG, Thienpont LM, Soldin SJ, Sokoll LJ (2005) Arch Pathol Lab Med 129:310–317

    CAS  Google Scholar 

  20. Fritz KS, Wilcox RB, Nelson JC (2007) Clin Chem 53:985–988

    Article  CAS  Google Scholar 

  21. Hantson A-L, De Meyer M, Guérit N (2004) J Chromatogr B 807:185–192

    Article  CAS  Google Scholar 

  22. De Brabandere VI, Hou P, Stöckl D, Thienpont LM, De Leenheer AP (1998) Rapid Commun Mass Spectrom 12:1099–1103

    Article  Google Scholar 

  23. Thienpont LM, Fierens C, De Leeheer AP, Przywara L (1999) Rapid Commun Mass Spectrom 13:1924–1931

    Article  CAS  Google Scholar 

  24. Michalke B, Schramel P, Witte H (2000) Biol Trace Elem Res 78:81–91

    Article  CAS  Google Scholar 

  25. Simon S, Tietge JE, Michalke B, Degitz S, Schramm K-W (2002) Anal Bioanal Chem 372:481–485

    Article  CAS  Google Scholar 

  26. Takatera K, Watanabe T (1993) Anal Chem 65:759–762

    Article  CAS  Google Scholar 

  27. Hopley CJ, Stokes P, Webb KS, Baynhm M (2004) Rapid Commun Mass Spectrom 18:1033–1038

    Article  CAS  Google Scholar 

  28. Tai S, Sniegoski LT, Welch MJ (2002) Clin Chem 48:637–642

    CAS  Google Scholar 

  29. Tai S, Bunk DM, White ET, Welch MJ (2004) Anal Chem 76:5092–5096

    Article  CAS  Google Scholar 

  30. Soukhova N, Soldin OP, Soldin SJ (2004) Clin Chim Acta 343:185–190

    Article  CAS  Google Scholar 

  31. Soldin SJ, Soukhova N, Janicic N, Jonklaas J, Soldin OP (2005) Clin Chim Acta 358:113–118

    Article  CAS  Google Scholar 

  32. Van Uytfanghe K, Stöckl D, Thienpont LM (2004) Rapid Commun Mass Spectrom 18:1539–1540

    Article  Google Scholar 

  33. van Uytfanghe K, Stöckl D, Ross HA, Thienpont LM (2006) Clin Chem 52:1817–1820

    Article  Google Scholar 

  34. Gu J, Soldin OP, Soldin SJ (2007) Clin Biochem 40:1386–1391

    Article  CAS  Google Scholar 

  35. Yue B, Rockwood AL, Sandrock T, Laulu SL, Kushnir MM, Meikle AW (2008) Clin Chem 54:642–651

    Article  CAS  Google Scholar 

  36. Klee GG (1996) Clin Chem 42:155–159

    CAS  Google Scholar 

  37. Nelson JC, Wilcox RB (1996) Clin Chem 42:146–154

    CAS  Google Scholar 

  38. Zhang Y, Conrad AH, Conrad GW (2005) J Am Soc Mass Spectrom 16:1781–1786

    Article  CAS  Google Scholar 

  39. Zhang Y, Conrad AH, Thoma R, Conrad GW (2006) J Mass Spectrum 41:162–168

    Article  CAS  Google Scholar 

  40. Wang D, Li QX (2009) Mass Spectrom Rev. doi:10.1002/mas.20263

  41. Zeng X, Freeman PK, Vasilev YV, Voinov VG, Simonich SL, Barofsky DF (2005) J Chem Eng Data 50:1548–1556

    Article  CAS  Google Scholar 

  42. Ismail AAA (2009) J Clin Pathol 62:673–678

    Article  CAS  Google Scholar 

  43. Jonklaas J, Kahric-Janicic N, Soldin OP, Soldin SJ (2009) Clin Chem 55:1380–1388

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from the National Institutes of Health : 1R01-ES016099. We thank Restek Corporation for supplying the Restek Ultra IITM biphenyl LC column.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather M. Stapleton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Stapleton, H.M. Analysis of thyroid hormones in serum by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 397, 1831–1839 (2010). https://doi.org/10.1007/s00216-010-3705-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3705-9

Keywords

Navigation