Skip to main content

Advertisement

Log in

Validated assay for studying activity profiles of human liver UGTs after drug exposure: inhibition and induction studies

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

UDP-glucuronsyltransferases (UGTs) are a family of conjugating enzymes that participate in the metabolism of many drugs. The study of potential drug–drug interactions involving UGTs has been largely hindered by the limited availability of selective functional assays for individual UGT enzymes. We propose a sensitive and reproducible procedure for the activity measurements of four major human hepatic UGT forms. The assays are based on analysis and quantification by high-performance liquid chromatography–tandem mass spectrometry of glucuronides formed from selective probe substrates, namely, β-estradiol (UGT1A1, 3-glucuronide), 1-naphthol (UGT1A6), propofol (UGT1A9), and naloxone (UGT2B7). The analytical methods developed in the present study have been validated under good laboratory practice compliance following FDA recommendations. The assays can be easily applied to both phenotyping UGT reactions in liver-derived cellular and subcellular systems, and drug–drug interaction in vitro studies. Chemical inhibition of UGTs was tested in human liver microsomes at substrate concentrations lower than the corresponding K M values. Under these conditions, selective inhibition of UGT2B7 by fluconazole and low amitriptyline concentrations were observed, whereas diclofenac and quinidine were shown as non-enzyme-selective inhibitors of UGTs. Induction of UGTs was studied in primary human hepatocytes and HepG2 cells cultured in 96-well plates. Aryl hydrocarbon receptor ligands (except indirubin in hepatocytes) increased the UGT1A1 activity in both cell models. The highest effects were observed in HepG2 cells exposed to indirubin (21-fold over the control) and omeprazole or β-naphthoflavone (about sixfold). Although variable effects were observed in other UGT enzymes, the degree of induction was generally lower than that for UGT1A1.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACN:

acetonitrile

AhR:

aryl hydrocarbon receptor

BNF:

β-naphthoflavone

CAR:

constitutive androstane receptor

CV:

coefficient of variation

CYP:

cytochrome P450

DMSO:

dimethyl sulfoxide

GLP:

good laboratory practice

HLM:

human liver microsomes

HPLC:

high-performance liquid chromatography

INDG:

indigo

IND:

indirubin

3-MC:

3-methylcholanthrene

LLOQ:

lower limit of quantification

MRM:

multiple reaction monitoring

MS:

mass spectrometry

MS/MS:

tandem mass spectrometry

MTT:

3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide

OME:

omeprazole

PB:

phenobarbital

PXR:

pregnane X receptor

QC:

quality control

RIF:

rifampicin

RME:

relative error of measurement

TCDD:

2,3,7,8-tetrachlorodibenzeno-p-dioxin

UDPGA:

UDP-glucuronic acid

UGT:

UDP-glucuronosyltransferase

References

  1. Burchell B, Brierley CH, Rance D (1995) Life Sci 57(20):1819–1831

    Article  CAS  Google Scholar 

  2. Tukey RH, Strassburg CP (2000) Annu Rev Pharmacol Toxicol 40:581–616

    Article  CAS  Google Scholar 

  3. Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA (2001) Drug Metab Rev 33(3–4):273–297

    Article  CAS  Google Scholar 

  4. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug Metab Dispos 32(11):1201–1208

    Article  CAS  Google Scholar 

  5. Ritter JK (2000) Chem Biol Interact 129(1–2):171–193

    Article  CAS  Google Scholar 

  6. Radominska-Pandya A, Bratton S, Little JM (2005) Curr Drug Metab 6(2):141–160

    Article  CAS  Google Scholar 

  7. Miners JO, Smith PA, Sorich MJ, McKinnon RA, Mackenzie PI (2004) Annu Rev Pharmacol Toxicol 44:1–25

    Article  CAS  Google Scholar 

  8. Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW (2005) Pharmacogenet Genomics 15(10):677–685

    Article  CAS  Google Scholar 

  9. Donato MT, Castell JV (2003) Clin Pharmacokinet 42(2):153–178

    Article  CAS  Google Scholar 

  10. Lahoz A, Donato MT, Castell JV, Gomez-Lechon MJ (2008) Curr Drug Metab 9(1):12–19

    Article  CAS  Google Scholar 

  11. Soars MG, Petullo DM, Eckstein JA, Kasper SC, Wrighton SA (2004) Drug Metab Dispos 32(1):140–148

    Article  CAS  Google Scholar 

  12. Soars MG, Ring BJ, Wrighton SA (2003) Drug Metab Dispos 31(6):762–767

    Article  CAS  Google Scholar 

  13. Fujiwara R, Nakajima M, Yamanaka H, Katoh M, Yokoi T (2007) Drug Metab Dispos 35(10):1781–1787

    Article  CAS  Google Scholar 

  14. Di Marco A, D’Antoni M, Attaccalite S, Carotenuto P, Laufer R (2005) Drug Metab Dispos 33(6):812–819

    Article  Google Scholar 

  15. Liu HX, He YQ, Hu Y, Liu Y, Zhang JW, Li W, Wang ZT, Yang L (2008) J Chromatogr B Anal Technol Biomed Life Sci 870(1):84–90

    Article  CAS  Google Scholar 

  16. Court MH (2005) Methods Enzymol 400:104–116

    Article  CAS  Google Scholar 

  17. Uchaipichat V, Winner LK, Mackenzie PI, Elliot DJ, Williams JA, Miners JO (2006) Br J Clin Pharmacol 61(4):427–439

    Article  CAS  Google Scholar 

  18. Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB, Miners JO (2004) Drug Metab Dispos 32(4):413–423

    Article  CAS  Google Scholar 

  19. OECD (2004) The application of the principles of good laboratory rractice to in vitro studies, vol 14

  20. Donato MT, Castell JV, Gomez-Lechon MJ (1999) J Hepatol 31(3):542–549

    Article  CAS  Google Scholar 

  21. Gomez-Lechon MJ, Castell JV, Donato MT (2007) Chem Biol Interact 168(1):30–50

    Article  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  23. FDA (2001) Guidance for industry: bioanalytical method validation

  24. Tallarida M, Murray R (1987) Manual of pharmacological calculations. Springer, New York

    Google Scholar 

  25. Gall WE, Zawada G, Mojarrabi B, Tephly TR, Green MD, Coffman BL, Mackenzie PI, Radominska-Pandya A (1999) J Steroid Biochem Mol Biol 70(1–3):101–108

    Article  CAS  Google Scholar 

  26. Westerink WM, Schoonen WG (2007) Toxicol In Vitro 21(8):1592–1602

    Article  CAS  Google Scholar 

  27. Hanioka N, Takeda Y, Jinno H, Tanaka-Kagawa T, Naito S, Koeda A, Shimizu T, Nomura M, Narimatsu S (2006) Chem Biol Interact 164(1–2):136–145

    Article  CAS  Google Scholar 

  28. Gomez-Lechon MJ, Donato MT, Castell JV, Jover R (2004) Curr Drug Metab 5(5):443–462

    Article  CAS  Google Scholar 

  29. Bonora-Centelles A, Donato M, Lahoz A, Pareja E, Mir J, Castell JV, Gómez-Lechón M (2009) Cell Transplant (in press)

  30. Trubetskoy OV, Finel M, Kurkela M, Fitzgerald M, Peters NR, Hoffman FM, Trubetskoy VS (2007) Assay Drug Dev Technol 5(3):343–354

    Article  CAS  Google Scholar 

  31. Addison RS, Parker-Scott SL, Hooper WD, Eadie MJ, Dickinson RG (2000) Biopharm Drug Dispos 21(6):235–242

    Article  CAS  Google Scholar 

  32. Kiang TK, Ensom MH, Chang TK (2005) Pharmacol Ther 106(1):97–132

    Article  CAS  Google Scholar 

  33. Belanger AS, Caron P, Harvey M, Zimmerman PA, Mehlotra RK, Guillemette C (2009) Drug Metab Dispos 37(9):1793–1796

    Article  CAS  Google Scholar 

  34. Uchaipichat V, Mackenzie PI, Elliot DJ, Miners JO (2006) Drug Metab Dispos 34(3):449–456

    CAS  Google Scholar 

  35. Gallicano KD, Sahai J, Shukla VK, Seguin I, Pakuts A, Kwok D, Foster BC, Cameron DW (1999) Br J Clin Pharmacol 48(2):168–179

    Article  CAS  Google Scholar 

  36. Sheehan NL, Brouillette MJ, Delisle MS, Allan J (2006) Ann Pharmacother 40(1):147–150

    Google Scholar 

  37. Saracino MR, Lampe JW (2007) Nutr Cancer 59(2):121–141

    CAS  Google Scholar 

  38. Nishimura M, Yoshitsugu H, Naito S, Hiraoka I (2002) Yakugaku Zasshi 122(5):339–361

    Article  CAS  Google Scholar 

  39. Sugihara K, Kitamura S, Yamada T, Okayama T, Ohta S, Yamashita K, Yasuda M, Fujii-Kuriyama Y, Saeki K, Matsui S, Matsuda T (2004) Biochem Biophys Res Commun 318(2):571–578

    Article  CAS  Google Scholar 

  40. Jemnitz K, Veres Z, Monostory K, Vereczkey L (2000) Drug Metab Dispos 28(1):34–37

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an EEC contract (LINTOP-037499) and the Spanish Ministry of Science and Innovation/Instituto de Salud Carlos III through a Miguel Server contract (CP08/00125) (to A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Lahoz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Glu-Standards Stability. QC samples at a concentration of 2, 5 μM were stored in the autosampler at 10 °C and quantified at 0, 10, 17, 24 and 31 h. (PDF 466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donato, M.T., Montero, S., Castell, J.V. et al. Validated assay for studying activity profiles of human liver UGTs after drug exposure: inhibition and induction studies. Anal Bioanal Chem 396, 2251–2263 (2010). https://doi.org/10.1007/s00216-009-3441-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3441-1

Keywords

Navigation