Skip to main content
Log in

Simultaneous determination by ultra-performance liquid chromatography–atmospheric pressure chemical ionization time-of-flight mass spectrometry of nitrated and oxygenated PAHs found in air and soot particles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An ultra-performance liquid chromatographic-atmospheric pressure chemical ionization time-of-flight mass spectrometric (UPLC-APCIToFMS) method for rapid analysis of twelve nitrated polycyclic aromatic hydrocarbons (NPAHs) and nine oxygenated polycyclic aromatic hydrocarbons (OPAHs) in particle samples has been developed. The extraction step using pressurized liquid extraction was optimized by experimental design methods and the concentrated extracts were analyzed without further clean-up. Matrix effects resulting in suppression or enhancement of the response during the ionization step were not observed. The suitability of the developed method is demonstrated by analysis of six different particle samples including standard reference materials, atmospheric particles collected by a high-volume sampler at an urban background site, and a soot sample from a burner. Results from these measurements showed clear differences between the different kinds of samples. Concentrations from reference materials are in good agreement with those from previous studies. Additionally a clear seasonal trend could be observed in atmospheric NPAH and OPAH concentrations found in real samples, with higher concentrations in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1994) Water Air Soil Pollut 60:279–300

    Article  Google Scholar 

  2. Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Cogliano V (2005) Lancet Oncol 6:931–932

    Article  Google Scholar 

  3. Durant JL, Lafleur AL, Plummer EF, Taghizadeh K, Busby WF, Thilly WG (1998) Environ Sci Technol 32:1894–1906

    Article  CAS  Google Scholar 

  4. Lewtas J, Chuang J, Nishioka M, Petersen B (1990) International Journal of Environmental Analytical Chemistry 39:245–256

    Article  CAS  Google Scholar 

  5. Koeber R, Bayona JM, Niessner R (1999) Environ Sci Technol 33:1552–1558

    Article  CAS  Google Scholar 

  6. Albinet A, Leoz-Garziandia E, Budzinski H, ViIlenave E (2006) J Chromatogr A 1121:106–113

    Article  CAS  Google Scholar 

  7. Allen JO, Dookeran NM, Taghizadeh K, Lafleur AL, Smith KA, Sarofim AF (1997) Environ Sci Technol 31:2064–2070

    Article  CAS  Google Scholar 

  8. Bamford HA, Baker JE (2003) Atmos Environ 37:2077–2091

    Article  CAS  Google Scholar 

  9. Grosse S, Letzel T (2007) J Chromatogr A 1139:75–83

    Article  CAS  Google Scholar 

  10. Schauer C, Niessner R, Pöschl U (2004) Anal Bioanal Chem 378:725–736

    Article  CAS  Google Scholar 

  11. Certificate of Analysis, Standard Reference Material (SRM) 1649a, Urban Dust, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2007

  12. Certificate of Analysis, Standard Reference Material (SRM) 1648a, Urban Particulate Matter, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2008

  13. NIES Certified Reference Material No. 8 “Vehicle Exhaust Particulates” National Institute of Environmental Studies, Japan

  14. Certificate of Analysis, Standard Reference Material (SRM) 1650b, Diesel Particulate Matter, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2006

  15. Lelièvre S, Bedjanian Y, Laverdet G, Le Bras G (2004) J Phys Chem A 108:10807–10817

    Article  Google Scholar 

  16. Mirivel G, Riffault V, Galloo J-C (2009) J Chromatogr A 1216:6481–6489

    Article  CAS  Google Scholar 

  17. Lintelmann J, Fischer K, Matuschek G (2006) J Chromatogr A 1133:241–247

    Article  CAS  Google Scholar 

  18. Barreto RP, Albuquerque FC, Netto ADP (2007) J Chromatogr A 1163:219–227

    Article  CAS  Google Scholar 

  19. Bonfanti L, Careri M, Mangia A, Manini P, Maspero M (1996) J Chromatogr A 728:359–369

    Article  CAS  Google Scholar 

  20. Karancsi T, Slégel P (1999) Journal of Mass Spectrometry 34:975–977

    Article  CAS  Google Scholar 

  21. Delhomme O, Millet M, Herckes P (2008) Talanta 74:703–710

    Article  CAS  Google Scholar 

  22. Kameda T, Goto T, Toriba A, Tang N, Hayakawa K (2009) J Chromatogr A 1216:6758–6761

    Article  CAS  Google Scholar 

  23. Bamford HA, Bezabeh DZ, Schantz MM, Wise SA, Baker JE (2003) Chemosphere 50:575–587

    Article  CAS  Google Scholar 

  24. Chiu C, Miles W (1996) Polycyclic Aromatic Compounds 6:307–314

    Article  Google Scholar 

  25. Cho AK, Di Stefano E, You Y, Rodriguez CE, Schmitz DA, Kumagai Y, Miguel AH, Eiguren-Fernandez A, Kobayashi T, Avol E, Froines JR (2004) Aerosol SciTechnol 38(S1):68–81

    Article  CAS  Google Scholar 

  26. Crimmins BS, Baker JE (2006) Atmos Environ 40:6764–6779

    Article  CAS  Google Scholar 

  27. Fernandez P, Bayona JM (1992) J Chromatogr A 625:141–149

    Article  CAS  Google Scholar 

  28. Oda J, Maeda I, Mori T, Yasuhara A, Saito Y (1998) Environmental Technology 19:961–976

    Article  CAS  Google Scholar 

  29. Turrio-Baldassarri L, Battistelli CL, Iamiceli AL (2003) Anal Bioanal Chem 375:589–595

    Article  CAS  Google Scholar 

  30. del Rosario Sienra M (2006) Atmos Environ 40:2374–2384

    Article  Google Scholar 

  31. Schnelle-Kreis J, Sklorz M, Peters A, Cyrys J, Zimmermann R (2005) Atmos Environ 39:7702–7714

    CAS  Google Scholar 

  32. Schnelle-Kreis J, Gebefugi I, Welzl G, Jaensch T, Kettrup A (2001) Atmos Environ 35:71–81

    Article  Google Scholar 

  33. Dimashki M, Harrad S, Harrison RM (2000) Atmos Environ 34:2459–2469

    Article  CAS  Google Scholar 

  34. Ladji R, Yassaa N, Cecinato A, Meklati BY (2007) Atmos Res 86:249–260

    Article  CAS  Google Scholar 

  35. Marino F, Cecinato A, Siskos PA (2000) Chemosphere 40:533–537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Research Institute of Industrial Environment (IRENI) which is financed by the Communauté Urbaine de Dunkerque, the Nord-Pas de Calais Regional Council, the French Ministry of Education and Research, and European funds (FEDER). The authors are also grateful to Isabelle Fronval and Benoît Herbin for their technical support. Yuri Bedjanian (ICARE/CNRS, Orléans, France) is acknowledged for graciously supplying the soot combustion sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Riffault.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1632 kb)

Online Resource 1

LC/APCI/ToF-MS accurate mass measurements for a standard solution of 21 NPAHs and OPAHs in MeOH (PDF 6 kb)

Online Resource 2

Calibration curve, correlation coefficient (r2), test range and instrumental LODs for 21 analytes in MeOH solution (PDF 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirivel, G., Riffault, V. & Galloo, JC. Simultaneous determination by ultra-performance liquid chromatography–atmospheric pressure chemical ionization time-of-flight mass spectrometry of nitrated and oxygenated PAHs found in air and soot particles. Anal Bioanal Chem 397, 243–256 (2010). https://doi.org/10.1007/s00216-009-3416-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3416-2

Keywords

Navigation