Skip to main content
Log in

Evaluation of the derivates of phosphorescent Pt-coproporphyrin as intracellular oxygen-sensitive probes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Several new derivatives of the phosphorescent Pt(II)-coproporphyrin (PtCP) were evaluated with respect to the sensing of intracellular oxygen by phosphorescence quenching. Despite the more favorable molecular charge compared to PtCP, self-loading into mammalian cells was rather inefficient for all the dyes, while cell loading by facilitated transport using transfection reagents produced promising results. The PtCP-NH2 derivative, which gave best loading efficiency and S/N ratio, was investigated in detail including the optimisation of loading conditions, studies of sub-cellular localization, cytotoxicity, oxygen sensitivity and long-term signal stability. Being spectrally similar to the macromolecular MitoXpress™ probe currently used in this application, the PtCP-NH2 demonstrated higher loading efficiency and phosphorescent signals, suitability for several problematic cell lines and a slightly increased lifetime scale for the physiological range (0–200 μM O2). In physiological experiments with different cell types, mitochondrial uncouplers and inhibitors performed on a time-resolved fluorescence plate reader, this probe produced the anticipated profiles of intracellular oxygen concentration and responses to cell stimulation. Therefore, PtCP-NH2 represents a convenient probe for the experiments and applications in which monitoring of cellular oxygen levels is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aragones J, Fraisl P, Baes M, Carmeliet P (2009) Oxygen sensors at the crossroad of metabolism. Cell Metabolism 9(1):11–22

    Article  CAS  Google Scholar 

  2. Nicholls D, Ferguson S (1992) Bioenergetics, vol. 2. Academic, London

    Google Scholar 

  3. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25(4):365–451

    CAS  Google Scholar 

  4. Hayakawa Y, Nemoto T, Iino M, Kasai H (2005) Rapid Ca2+-dependent increase in oxygen consumption by mitochondria in single mammalian central neurons. Cell Calcium 37(4):359–370

    Article  CAS  Google Scholar 

  5. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38(3–4):311–317

    Article  CAS  Google Scholar 

  6. Moncada S, Erusalimsky JD (2002) Opinion—does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3(3):214–220

    Article  CAS  Google Scholar 

  7. O'Riordan TC, Fitzgerald K, Ponomarev GV, Mackrill J, Hynes J, Taylor C, Papkovsky DB (2007) Sensing intracellular oxygen using near-infrared phosphorescent probes and live-cell fluorescence imaging, in Am J Physiol Regul Integr Comp Physiol R1613-R1620

  8. Opitz N, Lubbers DW (1984) Increased resolution power in pO2 analysis at lower pO2 levels via sensitivity enhanced optical pO2 sensors (pO2 optodes) using fluorescence dyes. Adv Exp Med Biol 180:261–267

    CAS  Google Scholar 

  9. Rumsey WL, Vanderkooi JM, Wilson DF (1988) Imaging of phosphorescence—a novel method for measuring oxygen distribution in perfused tissue. Science 241(4873):1649–1651

    Article  CAS  Google Scholar 

  10. Papkovsky DB (2004) Methods in optical oxygen sensing: protocols and critical analyses. Methods Enzymol 381:715–735

    Article  CAS  Google Scholar 

  11. Hynes J, Floyd S, Soini AE, O'Connor R, Papkovsky DB (2003) Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J Biomol Screen 8(3):264–272

    Article  CAS  Google Scholar 

  12. O'Riordan TC, Soini AE, Papkovsky DB (2001) Monofunctional derivatives of coproporphyrins for phosphorescent labeling of proteins and binding assays. Anal Biochem 290(2):366–375

    Article  Google Scholar 

  13. Castellano FN, Lakowicz JR (1998) A water-soluble luminescence oxygen sensor. Photochem Photobiol 67(2):179–183

    Article  CAS  Google Scholar 

  14. Borisov SM, Klimant I (2009) Luminescent nanobeads for optical sensing and imaging of dissolved oxygen. Microchimica Acta 164(1–2):7–15

    Article  CAS  Google Scholar 

  15. Xu W, Kneas KA, Demas JN, DeGraff BA (1996) Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation. Anal Chem 68(15):2605–2609

    Article  CAS  Google Scholar 

  16. Will Y, Hynes J, Ogurtsov V, Papkovsky D (2007) Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nature Protocols 1(6):2563–2572

    Article  Google Scholar 

  17. Xu H, Aylott JW, Kopelman R, Miller TJ, Philbert MA (2001) A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol–gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem 73(17):4124–4133

    Article  CAS  Google Scholar 

  18. Sun D, Tham FS, Reed CA, Chaker L, Boyd PDW (2002) Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated “jaws porphyrin” hosts. J Am Chem Soc 124(23):6604–6612

    Article  CAS  Google Scholar 

  19. Schmälzlin E, van Dongen JT, Klimant I, Marmodée B, Steup M, Fisahn J, Geigenberger P, Löhmannsröben H-G (2005) An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys J 89(2):1339–1345

    Article  Google Scholar 

  20. Clark HA, Barker SLR, Brasuel M, Miller MT, Monson E, Parus S, Shi Z-Y, Song A, Thorsrud B, Kopelman R, Ade A, Meixner W, Athey B, Hoyer M, Hill D, Lightle R, Philbert MA (1998) Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs). Sens Actuators B: Chem 51(1–3):12–16

    Article  Google Scholar 

  21. Summerton JE (2005) Endo-Porter: a novel reagent for safe, effective delivery of substances into cells. Ann NY Acad Sci 1058:62–75 (Therapeutic Oligonucleotides Transcriptional and Translational Strategies for Silencing Gene Expression)

    Article  CAS  Google Scholar 

  22. Jacobsen LB, Calvin SA, Colvin KE, Wright M (2004) FuGENE 6 transfection reagent: the gentle power. Methods 33(2):104–112

    Article  CAS  Google Scholar 

  23. Lian T, Ho RJY (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90(6):667–680

    Article  CAS  Google Scholar 

  24. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, Moran N, Keyes TE (2008) Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging. Chem Commun (42):5307-5309

  25. Dmitriev RI, Zhdanov AV, Ponomarev GV, Yashunski DV, Papkovsky DB (2009) Intracellular oxygen-sensitive phosphorescent probes based on cell-penetrating peptides. Anal Biochem. doi:10.1016/j.ab.2009.10.048

  26. O'Riordan TC, Zhdanov AV, Ponomarev GV, Papkovsky DB (2007) Analysis of intracellular oxygen and metabolic responses of mammalian cells by time-resolved fluorometry. Anal Chem 79(24):9414–9419

    Article  Google Scholar 

  27. Koskelin MM, Soini AE, Meltola NJ, Ponomarev GV (2002) Phosphorescent labeling reagents of platinum(II) and palladium(II) coproporphyrin-II. Preparation and performance characteristics. J Porphy Phthalocyanines 6(7–8):533–543

    Article  CAS  Google Scholar 

  28. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science + Business Media, LLC

  29. Tuckerman JR, Zhao Y, Hewitson KS, Tian Y-M, Pugh CW, Ratcliffe PJ, Mole DR (2004) Determination and comparison of specific activity of the HIF-prolyl hydroxylases. FEBS Lett 576(1–2):145–150

    Article  CAS  Google Scholar 

  30. O'Donovan C, Hynes J, Yashunski D, Papkovsky DB (2005) Phosphorescent oxygen-sensitive materials for biological applications. J Mater Chem 15(27–28):2946–2951

    Article  Google Scholar 

  31. Zhdanov AV, Ward MW, Prehn JHM, Papkovsky DB (2008) Dynamics of intracellular oxygen in PC12 cells upon stimulation of neurotransmission. J Biol Chem 283(9):5650–5661

    Article  CAS  Google Scholar 

  32. Lu HX, Guo LK, Kawazoe N, Tateishi T, Chen GP (2009) Effects of poly(l-lysine), poly(acrylic acid) and poly(ethylene glycol) on the adhesion, proliferation and chondrogenic differentiation of human mesenchymal stem cells. J Biomater Sci Polym Ed 20(5–6):577–589

    Article  CAS  Google Scholar 

  33. Pressman BC (1976) Biological applications of ionophores. Annu Rev Biochem 45:501–530

    Article  CAS  Google Scholar 

  34. Slater EC (1973) The mechanism of action of the respiratory inhibitor, antimycin. Biochim Biophys Acta 301(2):129–154

    CAS  Google Scholar 

  35. Buckler KJ, Vaughan-Jones RD (1998) Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol 513(Pt 3):819–833

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation of Ireland, grant 07/IN.1/B1804. The authors are grateful to R. Dmitriev and A. Zhdanov for the help with PC12 cells, G. Jasionek for the help with HepG2 cell line, and Dr. J. Hynes for assistance with oxygen sensing experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Papkovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fercher, A., Ponomarev, G.V., Yashunski, D. et al. Evaluation of the derivates of phosphorescent Pt-coproporphyrin as intracellular oxygen-sensitive probes. Anal Bioanal Chem 396, 1793–1803 (2010). https://doi.org/10.1007/s00216-009-3399-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3399-z

Keywords

Navigation