Skip to main content
Log in

Host-molecule-coated quantum dots as fluorescent sensors

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

“Host” molecules, containing a binding site that is highly specific for an analyte “guest,” are used as sensors to register analyte binding through a variety of mechanisms such as colorimetric, fluorescent, or electrochemical signals. There is increasing interest in the host–guest chemistry on the surface of quantum dots (QDs) and in the changes that it produces in the luminescent properties of QDs. The bulk of this study focuses on those QDs with bound host molecules (crown ether, cyclodextrin, calixarene, and porphyrin) and the selectivity they display toward metal ions and small organic molecules.

Applications of host-molecule-coated quantum dots (QDs)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dickert FL, Haunschild A (1993) Adv Mater 5:887–895

    Article  CAS  Google Scholar 

  2. Lehn JM, Atwood JL, Davies JED, MacNicol DD, Vogtle F (1996) Comprehensive supramolecular chemistry. Pergamon, Oxford

    Google Scholar 

  3. Beulen MWJ, Bugler J, de Jong MR, Lammerink B, Huskens J, Schonherr H, Vancso GJ, Boukamp BA, Wieder H, Offenhauser A, Knoll W, van Veggel FCJM, Reinhoudt DN (2000) Chem Eur J 6:1176–1183

    Article  CAS  Google Scholar 

  4. Kitano H, Taira Y, Yamamoto H (2000) Anal Chem 72:2976–2980

    Article  CAS  Google Scholar 

  5. Chen Y, Banerjee IA, Yu L, Djalali R, Matsui H (2004) Langmuir 20:8409–8413

    Article  CAS  Google Scholar 

  6. Wu Y, Zuo F, Zheng Z, Ding X, Peng Y (2009) Nanoscale Res Lett 4:738–747

    Article  CAS  Google Scholar 

  7. Wagner BD (2007) Curr Anal Chem 3:183–195

    Article  CAS  Google Scholar 

  8. Chan WCE, Nie S (1998) Science 281:2016–2018

    Article  CAS  Google Scholar 

  9. Bruchez M, Moronne M, Gin P, Weiss S, Alvisatos AP (1998) Science 281:2013–2016

    Article  CAS  Google Scholar 

  10. Chen L, Liu J, Yu X, He M, Pei X, Tang Z, Wang Q, Pang D, Li Y (2008) Biomaterials 29:4170–4176

    Article  CAS  Google Scholar 

  11. Hellinga HW, Marvin JS (1998) Trends Biotechnol 16:183–189

    Article  CAS  Google Scholar 

  12. Costa-Fernádez JM, Pereiro R, Sanz-Medel A (2006) Trends Anal Chem 25:207–218

    Article  CAS  Google Scholar 

  13. Lin Y, Xie H, Zhang Z, Tian Z, Pang D (2007) Prog Chem 19:1861–1865

    CAS  Google Scholar 

  14. Gill R, Zayats M, Willner I (2008) Angew Chem Int Ed 47:7602–7625

    Article  CAS  Google Scholar 

  15. Frasco MF, Chaniotakis N (2009) Anal Bioanal Chem. doi:10.1007/s00216-009-3033-0

  16. Zhong W (2009) Anal Bioanal Chem 394:47–59

    Article  CAS  Google Scholar 

  17. Galian RE, Guardia M (2009) Trends Anal Chem 28:279–291

    Article  CAS  Google Scholar 

  18. Frasco MF, Chaniotakis N (2009) Sensors 9:7266–7286

    Article  CAS  Google Scholar 

  19. Callan JF, Silva APDE, Mulrooney RC (2007) J Incl Phenom Macrocycl Chem 58:257–262

    Article  CAS  Google Scholar 

  20. Moore DE, Patel K (2001) Langmuir 17:2541–2544

    Article  CAS  Google Scholar 

  21. Murphy CJ (2002) Anal Chem 74:520A–526A

    Article  CAS  Google Scholar 

  22. Tshikhudo R, Demuru D, Wang Z, Brust M, Secchi A, Arduini A, Pochini A (2005) Angew Chem Int Ed 44:2913–2916

    Article  CAS  Google Scholar 

  23. Li L, Sun X, Yang Y, Guan N, Zhang F (2006) Chem Asian J 664:1–6

    Google Scholar 

  24. Sawicki R, Cier L (2006) Environ Sci Technol 40:1978–1983

    Article  CAS  Google Scholar 

  25. Leyton P, Sanchez-Cortes S, Garcia-Ramos J, Campos-Vallette M (2004) J Phys Chem B 108:17484–17490

    Article  CAS  Google Scholar 

  26. Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1991) Chem Rev 91:1721–2085

    Article  CAS  Google Scholar 

  27. Gokel GW, Leevy WM, Weber ME (2004) Chem Rev 104:2723–2750

    Article  CAS  Google Scholar 

  28. Rurack K, Rettig W, Resch-Genger U (2000) Chem Commun 407–408

  29. Toupance T, Benoit H, Sarazin D, Simon J (1997) J Am Chem Soc 119:9191–9197

    Article  CAS  Google Scholar 

  30. Flink S, Boukamp BA, van den Berg A, van Veggel FCJM, Reinhoudt DN (1998) J Am Chem Soc 120:4652–4657

    Article  CAS  Google Scholar 

  31. Lin S, Wu S, Chen C (2006) Angew Chem Int Ed 45:4948–4951

    Article  CAS  Google Scholar 

  32. Izaatl RM (1985) Chem Rev 85:271–339

    Article  Google Scholar 

  33. Pond SJK, Tsutsumi O, Rumi M, Kwon O, Zojer E, Brédas J, Marder SR, Perry JW (2004) J Am Chem Soc 126:9291–9306

    Article  CAS  Google Scholar 

  34. Ho M, Hsieh J, Lai C, Peng H, Kang C, Wu I, Lai C, Chen Y, Chou P (2009) J Phys Chem C 113:1686–1693

    Article  CAS  Google Scholar 

  35. Lin SY, Liu SW, Lin CM, Chen C (2002) Anal Chem 74:330–335

    Article  CAS  Google Scholar 

  36. Lin SY, Chen CH, Lin MC, Hsu HF (2005) Anal Chem 77:4821–4828

    Article  CAS  Google Scholar 

  37. Chen C, Cheng C, Lai C, Wu P, Wu K, Chou P, Chou Y, Chiu H (2006) Chem Commun 263–265

  38. Banerjee S, Kar S, Santra S (2008) Chem Commun 3037–3039

  39. Ruedas-Rama MJ, Hall EAH (2008) Anal Chem 80:8260–8268

    Article  CAS  Google Scholar 

  40. Szejtli J (1998) Chem Rev 98:1743–1753

    Article  CAS  Google Scholar 

  41. Kuwabara T, Aoyagi T, Takamura M, Matsushita A, Nakamura A, Ueno A (2002) J Org Chem 67:720–725

    Article  CAS  Google Scholar 

  42. Fragoso A, Caballero J, Almirall E, Villalonga R, Cao R (2002) Langmuir 18:5051–5054

    Article  CAS  Google Scholar 

  43. Haider JM, Williams RM, Cola LD, Pikramenou Z (2003) Angew Chem Int Ed 42:1830–1833

    Article  CAS  Google Scholar 

  44. Stanier CA, Alderman SJ, Claridge TDW, Anderson HL (2002) Angew Chem Int Ed 41:1769–1772

    Article  Google Scholar 

  45. Alvarez J, Liu J, Roman E, Kaifer AE (2000) Chem Commun 13:1151–1152

    Article  Google Scholar 

  46. Liu J, Xu RL, Kaifer AE (1998) Langmuir 14:7337–7339

    Article  CAS  Google Scholar 

  47. Nelles G, Weisser M, Back R, Wohlfart P, Wenz G, Mittler-Neher S (1996) J Am Chem Soc 118:5039–5046

    Article  CAS  Google Scholar 

  48. Rojas MT, Koniger R, Stoddart JF, Kaifer AE (1995) J Am Chem Soc 117:336–343

    Article  CAS  Google Scholar 

  49. Palaniappan K, Hackney SA, Liu J (2004) Chem Commun 2704–2706

  50. Palaniappan K, Xue C, Arumugam G, Hackney SA, Liu J (2006) Chem Mater 18:1275–1280

    Article  CAS  Google Scholar 

  51. Han C, Li H (2008) Chin Chem Lett 19:215–218

    Article  CAS  Google Scholar 

  52. Li H, Han C (2008) Chem Mater 20:6053–6059

    Article  CAS  Google Scholar 

  53. Risley DS, Strege MA (2000) Anal Chem 72:1736–1739

    Article  CAS  Google Scholar 

  54. Schumacher DD, Mitchell CR, Xiao TL, Rozhkov RV, Larock RC, Armstrong DW (2003) J Chromatogr A 1011:37–47

    Article  CAS  Google Scholar 

  55. Han X, Zhong Q, Yue D, Della Ca N, Larock RC, Armstrong DW (2005) Chromatographia 61:205–211

    Article  CAS  Google Scholar 

  56. Han C, Li H (2008) Small 4:1344–1350

    Article  CAS  Google Scholar 

  57. Yang J, Xiang J, Chen C, Lu D, Xu G (2001) J Colloid Interface Sci 240:425–431

    Article  CAS  Google Scholar 

  58. Qu F, Li H (2009) Sens Actuators B 135:499–505

    Article  CAS  Google Scholar 

  59. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nat Mater 2:630–638

    Article  CAS  Google Scholar 

  60. Zhang C, Yeh H, Kuroki MT, Wang T (2005) Nat Mater 4:826–831

    Article  Google Scholar 

  61. Algar WR, Krull UJ (2009) Anal Chem 81:4113–4120

    Article  CAS  Google Scholar 

  62. Rakshit S, Vasudevan S (2008) ACS Nano 2:1473–1479

    Article  CAS  Google Scholar 

  63. Freeman R, Finder T, Bahshi L, Willner I (2009) Nano Lett 9:2073–2076

    Article  CAS  Google Scholar 

  64. Bott SG, Coleman AW, Atwood JL (1986) J Am Chem Soc 108:1709–1710

    Article  CAS  Google Scholar 

  65. Arduini A, Demuru D, Pochini A, Secchi A (2005) Chem Commun 645–647

  66. Arduini A, Casnati A, Fabbi M, Minari P, Pochini A, Sicuri AR, Ungaro R (1992) Supramol Chem 31–50

  67. Li H, Chen Y, Zeng Z, Xie C, Yang X (2005) Anal Sci 6:717–720

    Article  Google Scholar 

  68. Tshikhudo R, Demuru D, Wang Z, Brust M, Secchi A, Arduini A, Pochini A (2005) Angew Chem Int Ed 44:2913–2916

    Article  CAS  Google Scholar 

  69. Li H, Zhang Y, Wang X, Xiong D, Bai Y (2007) Mater Lett 61:1474–1477

    Article  CAS  Google Scholar 

  70. Jin T, Fujii F, Sakata H, Tamura M, Kinjo M (2005) Chem Commun 2829–2831

  71. Jin T, Fujii F, Yamada E, Nodasaka Y, Kinjo M (2006) J Am Chem Soc 128:9288–9289

    Article  CAS  Google Scholar 

  72. Jin T, Fujii F, Sakata H, Mamoru T, Kinjo M (2005) Chem Commun 4300–4302

  73. Li H, Qu F (2007) Chem Mater 19:4148–4154

    Article  CAS  Google Scholar 

  74. Li H, Qu F (2007) J Mater Chem 17:3536–3544

    Article  CAS  Google Scholar 

  75. Ben-Ishay ML, Gedanken A (2007) Langmuir 23:5238–5242

    Article  CAS  Google Scholar 

  76. Chen M, Diao GW, Zhou XM (2007) Nanotechnology 18:275606–275615

    Article  CAS  Google Scholar 

  77. Wang X, Wu J, Li F, Li H (2008) Nanotechnology 19:205501–205508

    Article  CAS  Google Scholar 

  78. Qu F, Zhou X, Xu J, Li H, Xie G (2009) Talanta 78:1359–1363

    Article  CAS  Google Scholar 

  79. Li H, Wang X (2008) Photochem Photobiol Sci 7:694–699

    Article  CAS  Google Scholar 

  80. Vlascici D, Cosmas EF, Pica EM, Cosma V, Bizerea O, Mihailescu G, Olenic L (2008) Sensors 8:4995–5004

    Article  CAS  Google Scholar 

  81. Chrysochoos J (1992) J Phys Chem 96:2868–3873

    Article  CAS  Google Scholar 

  82. Isarov AV, Chrysochoos J (1997) Langmuir 13:3142–3149

    Article  CAS  Google Scholar 

  83. Isarov AV, Chrysochoos J (1998) Proc Indian Acad Sci Chem Sci 110:277–295

    CAS  Google Scholar 

  84. Ivanisevic A, Ellis AB (1999) J Phys Chem B 103:1914–1919

    Article  CAS  Google Scholar 

  85. Ivanisevic A, Ellis AB (2000) Langmuir 16:7852–7858

    Article  CAS  Google Scholar 

  86. Ivanisevic A, Reynolds MF, Burstyn JN, Ellis AB (2000) J Am Chem Soc 122:3731–3738

    Article  CAS  Google Scholar 

  87. Ellis AB, Brainard RJ, Kepler KD, Moore DE, Winder EJ, Kuech TF, Lisensky GC (1997) J Chem Educ 74:680–684

    Article  CAS  Google Scholar 

  88. Frasco MF, Vamvakaki V, Chaniotakis N (2009) J Nanopart Res. doi:10.1007/s11051-009-9714-y

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (20772038), the Program for Distinguish Young Scientist of Hubei Province (2007ABB017), the Program for Chenguang Young Scientist for Wuhan (200750731283), and the 863 program (2009AA06A417) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C., Li, H. Host-molecule-coated quantum dots as fluorescent sensors. Anal Bioanal Chem 397, 1437–1444 (2010). https://doi.org/10.1007/s00216-009-3361-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3361-0

Keywords

Navigation