Skip to main content
Log in

Non-destructive depth compositional profiles by XPS peak-shape analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The measured peak shape and intensity of the photoemitted signal in X-ray photoelectron spectroscopy (XPS) experiments (elastic and inelastic parts included) are strongly correlated, through electron-transport theory, with the depth distribution of photoelectron emitters within the analyzed surface. This is the basis of so-called XPS peak-shape analysis (also known as the Tougaard method) for non-destructive determination of compositional in-depth (up to 6–8 nm) profiles. This review describes the theoretical basis and reliability of this procedure for quantifying amounts and distributions of material within a surface. The possibilities of this kind of analysis are illustrated with several case examples related to the study of the initial steps of thin-film growth and the modifications induced in polymer surfaces after plasma treatments.

Photoemitted spectra and in-depth concentration profiles (blue: oxygen; orange: carbon), obtained by means of XPS peak shape analysis, of a PET plasma activated surface. The shown topography corresponds to an atomic force microscopy image of the treated surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Briggs D, Seah MP (1990) Practical surface analysis – Auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley–Interscience, Chichester

    Google Scholar 

  2. Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. Wiley, UK

    Book  Google Scholar 

  3. Hajati S, Coultas S, Blomfield C, Tougaard S (2008) Surf Interface Anal 40:688–691

    Article  CAS  Google Scholar 

  4. Hajati S, Tougaard S, Walton J, Fairley N (2008) Surf Sci 602:3064–3070

    Article  CAS  Google Scholar 

  5. Shirley DA (1972) Phys Rev B 5:4709–4714

    Article  Google Scholar 

  6. Tougaard S, Hansen HS, Neumann M (1991) Surf Sci 244:125–134

    Article  CAS  Google Scholar 

  7. Jansson C, Hansen HS, Jung C, Braun W, Tougaard S (1992) Surf Interface Anal 19:217–221

    Article  CAS  Google Scholar 

  8. Martin-Concepción AI, Yubero F, Espinós JP, Tougaard S (2004) Surf Interface Anal 36:788–792

    Article  Google Scholar 

  9. Kappen P, Reihs K, Seidel C, Voertz M, Fuchs H (2000) Surf Sci 465:40–50

    Article  CAS  Google Scholar 

  10. Tougaard S (1996) J Vac Sci Technol A 14:1415–1423

    Article  CAS  Google Scholar 

  11. Tougaard S QUASES: software Package for Quantitative XPS/AES Analysis of surface nanostructures by peak shape analysis. http://www.QUASES.com

  12. Landau L (1994) J. Phys. 8:201

    Google Scholar 

  13. Yubero F, Sanz JM, Ramskov B, Tougaard S (1996) Phys Rev B 53:9719–9727

    Article  CAS  Google Scholar 

  14. Tougaard S, Chorkendorff I (1987) Phys Rev B 35:6570–6577

    Article  CAS  Google Scholar 

  15. Tougaard S (1997) Surf Interface Anal 25:137–154

    Article  CAS  Google Scholar 

  16. Martín-Concepción AI, Yubero F, Espinós JP, González-Elipe AR, Tougaard S (2003) J Vac Sci Technol A 21:1393–1398

    Article  Google Scholar 

  17. Dudeck D, Yanguas-Gil A, Yubero F, Cotrino J, Espinós JP, de la Cruz W, González-Elipe AR (2007) Surf Sci 601:2223–2231

    Article  CAS  Google Scholar 

  18. Yubero F, Mansilla C, Ferrer FJ, Holgado JP, González-Elipe AR (2007) J Appl Phys 101:124910

    Article  Google Scholar 

  19. Mansilla C, Gracia F, Martin-Concepción AI, Espinós JP, Holgado JP, Yubero F, González-Elipe AR (2007) Surf Interface Anal 39:331–336

    Article  CAS  Google Scholar 

  20. Preda I, Gutiérrez A, Abbate A, Yubero F, Méndez J, Alvarez L, Soriano L (2008) Phys Rev B 77:075411

    Article  Google Scholar 

  21. Schleberger M, Simonsen AC, Tougaard S, Hansen JL, Larsen AN (1997) J Vac Sci Technol, A 15:3032–3035

    Article  CAS  Google Scholar 

  22. Simonsen AC, Schleberger M, Tougaard S, Hansen JL, Nylandsted Larsen A (1999) Thin Solid Films 338:165–171

    Article  Google Scholar 

  23. Hansen HS, Jansson C, Tougaard S (1992) J Vac Sci Technol A 10:2938–2944

    Article  CAS  Google Scholar 

  24. Hansen HS, Tougaard S, Biebuyck H (1992) J Electron Spectrosc Relat Phenom 58:141–158

    Article  CAS  Google Scholar 

  25. González-Elipe AR, Yubero F (2001) In: Nalva HS (ed) Handbook of surfaces and interfaces of materials: surface and interface analysis and properties. Academic Press, San Diego, vol. 2, chapter 4

    Google Scholar 

  26. Speller S, Heiland W, Schleberger M (2001) In: Nalva HS (ed) Handbook of surfaces and interfaces of materials: surface and interface analysis and properties. Academic Press, San Diego, vol. 2, chapter 1

    Google Scholar 

  27. Espinós JP, Martin-Concepción AI, Mansilla C, Yubero F, González-Elipe AR (2006) J Vac Sci Technol A 24:919–928

    Article  Google Scholar 

  28. Semak BS, Jensen T, Takker LB, Morgen P, Tougaard S (2002) Surf Sci 498:11–20

    Article  CAS  Google Scholar 

  29. McIntyre NS, Grosvenor NHY, AP DRD, Briggs D (2005) Surf Interface Anal 37:749–754

    Article  CAS  Google Scholar 

  30. Demoisson F, Raes M, Terryn H, Guillot J, Migeon HN, Reniers F (2008) Surf Interface Anal 40:566–570

    Article  CAS  Google Scholar 

  31. Preda I (2008) PhD Thesis. Universidad Autónoma de Madrid

  32. Simonsen AC, Tougaard S, Hansen JL, Larsen AN (2001) Surf Interface Anal 31:328–337

    Article  Google Scholar 

  33. Simonsen AC, Pøhler JP, Jeynes C, Tougaard S (1999) Surf Interface Anal 27:52–56

    Article  Google Scholar 

  34. Yubero F, González-Elipe AR, Tougaard S (2000) Surf Sci 457:24–36

    Article  CAS  Google Scholar 

  35. Grosvenor AP, Kobe BA, McIntyre NS (2004) Surf Sci 572:217–227

    Article  CAS  Google Scholar 

  36. Yubero F, Holgado JP, Barranco A, González-Elipe AR (2002) Surf Interface Anal 34:201–205

    Article  CAS  Google Scholar 

  37. Yubero F, Jansson C, Batchelor DR, Tougaard S (1995) Surf Sci 331–335:753–758

    Article  Google Scholar 

  38. López-Santos C, Yubero F, Cotrino J, Barranco A, González-Elipe AR (2008) J Phys D. Appl Phys 41:225209

    Article  Google Scholar 

  39. López-Santos C, et al. (to be published)

  40. Tougaard S (1998) Surf Interface Anal 26:249–269

    Article  CAS  Google Scholar 

  41. Scharfschwerdt C, Kutscher J, Schneider F, Neumann M, Tougaard S (1992) J Electron Spectrosc Relat Phenom 60:321–335

    Article  CAS  Google Scholar 

  42. Tougaard S, Jansson C (1993) Surf Interface Anal 20:1013–1046

    Article  CAS  Google Scholar 

  43. Jansson C, Hansen HS, Yubero F, Tougaard S (1992) J Electron Spectrosc Relat Phenom 60:301–319

    Article  CAS  Google Scholar 

  44. Tougaard S, Jansson C (1993) Surf Interface Anal 20:1013–1046

    Article  CAS  Google Scholar 

  45. Scofield JH (1976) J Elect Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  46. Martín-Concepción AI, Yubero F, Espinós JP, García-López J, Tougaard S (2003) Surf Interface Anal 35:984–990

    Article  Google Scholar 

  47. Hajati S, Zaporojtchenko V, Faupel F, Tougaard S (2007) Surf Sci 601:3261–3267

    Article  CAS  Google Scholar 

  48. Jiménez VM, Espinós JP, González-Elipe AR (1999) Appl Surf Sci 141:186–192

    Article  Google Scholar 

  49. Gallardo-Vega C, de la Cruz W, Tougaard S, Cota-Araiza L (2008) Appl Surf Sci 255:3000–3003

    Article  CAS  Google Scholar 

  50. Schleberger M, Fujita D, Scharfschwerdt C, Tougaard S (1995) Surf Sci 331–333:942–947

    Article  Google Scholar 

  51. Schleberger M, Fujita D, Scharfschwerdt C, Tougaard S (1995) J Vac Sci Technol B13:949–953

    Google Scholar 

  52. Sato M, Tsukamoto N, Shiratori T, Furusawa T, Suzuki N, S. Tougaard S (2006) Surf Interface Anal 38:604–609

    Article  CAS  Google Scholar 

  53. Winters HF, Graves DB, Humbird D, Tougaard S (2007) J Vac Sci Technol A 25:96–103

    Article  CAS  Google Scholar 

  54. Ferekides CS, Balasubramanian U, Mamazza R, Viswanathan V, Zhao H, Morel DL (2004) Sol. Energy 77:823

    Article  CAS  Google Scholar 

  55. Venables A (1999) In: Liu W, Santos MB (eds) Thin films: heteroepitaxial systems, chap. 1. Singapore, World Scientific

    Google Scholar 

  56. Wagner CD (1975) Faraday discuss. Chem Soc 60:291

    Google Scholar 

  57. Wagner CD (1978) J Vac Sci Technol 15:518–523

    Article  CAS  Google Scholar 

  58. Mejías JA, Jiménez VM, Lassaletta G, Fernández A, Espinós JP, González-Elipe AR (1996) J Phys Chem 100:16255–16262

    Article  Google Scholar 

  59. Grace JM, Gerenser LJ (2003) J Dispersion Sci Technol 24:305

    Article  CAS  Google Scholar 

  60. Truica-Marasescu F, Wertheimer MR (2008) Plasma Process and Polymers 5:44–57

    Article  CAS  Google Scholar 

  61. Endrino JL, Marco JF, Allen M, Poolcharuansin P, Phani AR, Albella JM, Anders A (2008) Appl Surf Sci 254:5323–5328

    Article  CAS  Google Scholar 

  62. Süzer S (1997) Pure Appl Chem 69:163–168

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Science and Education of Spain (projects MAT2007-65764 and Consolider Funcoat CSD2008-00023) and the Junta de Andalucía (projects TEP2275 and P07-FQM-03298) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yubero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Santos, M.C., Yubero, F., Espinós, J.P. et al. Non-destructive depth compositional profiles by XPS peak-shape analysis. Anal Bioanal Chem 396, 2757–2768 (2010). https://doi.org/10.1007/s00216-009-3312-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3312-9

Keywords

Navigation