Skip to main content
Log in

Development of liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for analysis of halogenated flame retardants in wastewater

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Until recently, atmospheric pressure photoionization (APPI) has typically been used for the determination of non-polar halogenated flame retardants (HFRs) by liquid chromatography (LC) tandem mass spectrometry. In this study, we demonstrated the feasibility of utilizing liquid chromatography atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (LC-APCI-MS/MS) for analysis of 38 HFRs. This developed method offered three advantages: simplicity, rapidity, and high sensitivity. Compared with APPI, APCI does not require a UV lamp and a dopant reagent to assist atmospheric pressure ionization. All the isomers and the isobaric compounds were well resolved within 14-min LC separation time. Excellent instrument detection limits (6.1 pg on average with 2.0 μL injection) were observed. The APCI mechanism was also investigated. The method developed has been applied to the screening of wastewater samples for screening purpose, with concentrations determined by LC-APCI-MS/MS agreeing with data obtained via gas chromatography high resolution mass spectrometry.

LC-APCI-MS/MS for analysis of halogenated flame reterdants

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Wit CA (2002) Chemosphere 46:583–624

    Article  Google Scholar 

  2. Covaci A, Voorspoels S, Ramos L, Neels H, Blust R (2007) J Chromatogr A 1153:145–171

    Article  CAS  Google Scholar 

  3. Kolic TM, Shen L, MacPherson K, Fayez L, Gobran T, Helm PA, Marvin CH, Arsenault G, Reiner EJ (2009) J Chromatogr Sci 47:83–91

    CAS  Google Scholar 

  4. Covaci A, Voorspoels S, de Boer J (2003) Environ Int 29:735–756

    Article  CAS  Google Scholar 

  5. Law RJ, Kohler M, Heeb NV, Gerecke AC, Schmid P, Voorspoels S, Covaci A, Becher G, Janak K, Thomsen C (2005) Environ Sci Technol 39:281A–287A

    Article  CAS  Google Scholar 

  6. Budakowski W, Tomy G (2003) Rapid Commun Mass Spectrom 17:1399–1404

    Article  CAS  Google Scholar 

  7. Morris S, Allchin CR, Zegers BN, Haftka JJH, Boon JP, Belpaire C, Leonards PEG, Van Leeuwen SPJ, De Boer J (2004) Environ Sci Technol 38:5497–5504

    Article  CAS  Google Scholar 

  8. Saint-Louis R, Pelletier E (2004) Analyst 129:724–730

    Article  CAS  Google Scholar 

  9. Suzuki S, Hasegawa A (2006) Analyt Sci 22:469–474

    Article  CAS  Google Scholar 

  10. Tollback J, Crescenzi C, Dyremark E (2006) J Chromatogr A 1104:106–112

    Article  Google Scholar 

  11. Koppen R, Becker R, Jung C, Piechotta C, Nehls I (2006) Analyt Bioanalyt Chem 384:1485–1492

    Article  Google Scholar 

  12. Debrauwer L, Riu A, Jouahri M, Rathahao E, Jouanin I, Antignac JP, Cariou R, Le Bizec B, Zalko D (2005) J Chromatogr A 1082:98–109

    Article  CAS  Google Scholar 

  13. Morris S, Bersuder P, Allchin CR, Zegers B, Boon JP, Leonards PEG, de Boer J (2006) TrAC. Trends Anal Chem 25:343–349

    Article  CAS  Google Scholar 

  14. Riu A, Zalko D, Debrauwer L (2006) Rapid Commun Mass Spectrom 20:2133–2142

    Article  CAS  Google Scholar 

  15. Lagalante AF, Oswald TD (2008) Analyt Bioanalyt Chem 391:2249–2256

    Article  CAS  Google Scholar 

  16. Riu A, Cravedi JP, Debrauwer L, Garcia A, Canlet C, Jouanin I, Zalko D (2008) Environ Int 34:318–329

    Article  Google Scholar 

  17. Long M, Dorman FL, Lake R, Kowalski J, Wittrig RE (2008) In: 32nd International Symposium on HPLC, Baltimore, Maryland

  18. Janak K, Covaci A, Voorspoels S, Becher G (2005) Environ Sci Technol 39:1987–1994

    Article  CAS  Google Scholar 

  19. Tomy GT, Halldorson T, Danell R, Law K, Arsenault G, Alaee M, MacInnis G, Marvin CH (2005) Rapid Commun Mass Spectrom 19:2819–2826

    Article  CAS  Google Scholar 

  20. Marvin CH, Tomy GT, Alaee M, MacInnis G (2006) Chemosphere 64:268–275

    Article  CAS  Google Scholar 

  21. Cariou R, Antignac JP, Marchand P, Berrebi A, Zalko D, Andre F, Le Bizec B (2005) J Chromatogr A 1100:144–152

    Article  CAS  Google Scholar 

  22. Hayama T, Yoshida H, Onimaru S, Yonekura S, Kuroki H, Todoroki K, Nohta H, Yamaguchi M (2004) J Chromatogr B Analyt Technol Biomed Life Sci 809:131–136

    Article  CAS  Google Scholar 

  23. Berger U, Herzke D, Sandanger TM (2004) Anal Chem 76:441–452

    Article  CAS  Google Scholar 

  24. Chu SG, Haffner GD, Letcher RJ (2005) J Chromatogr A 1097:25–32

    Article  CAS  Google Scholar 

  25. Cai SS, Hanold KA, Syage JA (2007) Anal Chem 79:2491–2498

    Article  CAS  Google Scholar 

  26. Raffaelli A (2007) Advances in LC-MS instrumentation. Elsevier, Amsterdam

    Google Scholar 

  27. Raffaelli A (2007) In: Cappiello A (ed) Advances in LC-MS Instrumentation, vol. 72. Elsevier, Amsterdam, pp 14–16

    Google Scholar 

  28. Stapleton HM, Allen JG, Kelly SM, Konstantinov A, Klosterhaus S, Watkins D, McClean MD, Webster TF (2008) Environ Sci Technol 42:6910–6916

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Wellington Laboratories for providing the flame retardant standards and Restek for supplying LC columns. We acknowledge the assistance of Terry Kolic and Chunyan Hao (Ontario Ministry of the Environment). We also thank Hesham Ghobarah (Applied Biosystem) for his helpful discussions and two anonymous reviewers for their constructive comments, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Ningsun Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S.N., Reiner, E.J., Marvin, C. et al. Development of liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for analysis of halogenated flame retardants in wastewater. Anal Bioanal Chem 396, 1311–1320 (2010). https://doi.org/10.1007/s00216-009-3279-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3279-6

Keywords

Navigation