Skip to main content
Log in

Time course of expression of the retinoid X receptor gene and induction of imposex in the rock shell, Thais clavigera, exposed to triphenyltin chloride

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To examine the role of the retinoid X receptor (RXR) in the development of imposex in gastropods, we investigated the time course of expression of the RXR gene in various tissues (ctenidium, ovary or testis, digestive gland, penis-forming area or penis, and head ganglia) of female and male rock shells (Thais clavigera) exposed to triphenyltin (TPT) in a flow-through exposure system for 3 months. Accumulations of TPT in tissues were clearly observed in exposed individuals, whereas no accumulation of TPT was observed in the control groups. In females, 3-month exposure to TPT resulted in the development of imposex, and penis lengths in imposex-exhibiting females were significantly longer in small females (shell height <20 mm) than in large females (shell height ≥20 mm). RXR gene expression in the ovary, penis-forming area or penis, and head ganglia of females exposed for 3 months was significantly higher than expression in control females, and the highest RXR gene expression was found in the penis-forming area or penis. Moreover, RXR gene expression in the penis-forming area or penis of each female exposed to TPT seemed to be associated with an increase in penis length. In males, the ratio of penis length to shell height was significantly larger in the exposed groups than in the controls. Although RXR gene expression in males exposed for 3 months was not significantly higher than expression in control males in any tissues, the highest gene expression was observed in the penis of exposed males. These results suggest that RXR plays an important role in the development of male genitalia (i.e., penis and vas deferens) in gastropods, although RXR might also have other physiological functions.

Relationships between average penis length and RXR gene expression in penis-forming area/penis and ovary of female rock shells exposed to 500 ng/L of triphenyltin chloride (TPTCl) for 3 months in a flow-through system. TPT, triphenyltin. Bars in the upper and middle figures represent normalized RXR gene expression in ovary and penis-forming area/penis of females exposed to TPTCl, respectively. Dots or symbols in the bottom figure represent measured values of penis length of each female in the respective composite samples. RXR gene expression in the penis-forming area or penis of each female exposed to TPT seems to be associated with an increase in penis length, however, that in ovary does not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bryan GW, Gibbs PE, Hummerstone LG, Burt GR (1986) J Mar Biol Assoc UK 66:611–640

    Article  CAS  Google Scholar 

  2. Smith BS (1971) Proc Malacol Soc Lond 39:377–378

    Google Scholar 

  3. Bryan GW, Gibbs PE, Burt GR, Hummerstone LG (1987) J Mar Biol Assoc UK 67:525–544

    Article  CAS  Google Scholar 

  4. Bryan GW, Gibbs PE, Burt GR (1988) J Mar Biol Assoc UK 68:733–744

    Article  CAS  Google Scholar 

  5. Gibbs PE, Bryan GW, Pascoe PL, Burt GR (1987) J Mar Biol Assoc UK 67:507–523

    Article  CAS  Google Scholar 

  6. Horiguchi T, Shiraishi H, Shimizu M, Morita M (1994) J Mar Biol Assoc UK 74:651–669

    Article  CAS  Google Scholar 

  7. Horiguchi T, Shiraishi H, Shimizu M, Morita M (1997) Environ Pollut 95:85–91

    Article  CAS  Google Scholar 

  8. Gibbs PE, Bryan GW (1986) J Mar Biol Assoc UK 66:767–777

    Article  CAS  Google Scholar 

  9. Gibbs PE, Pascoe PL, Burt GR (1988) J Mar Biol Assoc UK 68:715–731

    Article  Google Scholar 

  10. Gibbs PE, Bryan GW, Pascoe PL, Burt GR (1990) J Mar Biol Assoc UK 70:639–656

    Article  Google Scholar 

  11. Horiguchi T, Kojima M, Hamada F, Kajikawa A, Shiraishi H, Morita M, Shimizu M (2006) Environ Health Perspect 114(Suppl 1):13–19

    Google Scholar 

  12. Fioroni P, Oehlmann J, Stroben E (1991) Zool Anz 226:1–26

    Google Scholar 

  13. Horiguchi T, Shiraishi H, Shimizu M, Morita M (1997) Appl Organomet Chem 11:451–455

    Article  CAS  Google Scholar 

  14. Horiguchi T (2000) In: Kawai S, Koyama J (eds) Problems of endocrine disruptors in fisheries environment. [in Japanese] Koseisha-Koseikaku, Tokyo

  15. Matthiessen P, Reynoldson T, Billinghurst Z, Brassard DW, Cameron P, Chandler GT, Davies IM, Horiguchi T, Mount DR, Oehlmann J, Pottinger TG, Sibley PK, Thompson A, Vethaak AD (1999) In: de Fur PL, Ingersoll C, Tattersfield L (eds) Endocrine disruption in invertebrates: endocrinology, testing, and assessment. SETAC, Florida

    Google Scholar 

  16. Matthiessen P, Gibbs PE (1998) Environ Toxicol Chem 17:37–43

    Article  CAS  Google Scholar 

  17. Bettin C, Oehlmann J, Stroben E (1996) Helgol Meeresunters 50:299–317

    Article  Google Scholar 

  18. Ronis MJJ, Mason AZ (1996) Mar Environ Res 42:161–166

    Article  CAS  Google Scholar 

  19. Féral C, Le Gall S (1983) In: Lever J, Boer HH (eds) Molluscan neuro-endocrinology. North-Holland, Amsterdam

    Google Scholar 

  20. Oberdörster E, McClellan-Green P (2000) Peptides 21:1323–1330

    Article  Google Scholar 

  21. Horiguchi T (2009) In: Arai T, Harino H, Ohji M, Langston WJ (eds) Ecotoxicology of antifouling biocides. Springer, Tokyo

    Google Scholar 

  22. Nishikawa J, Mamiya S, Kanayama T, Nishikawa T, Shiraishi F, Horiguchi T (2004) Environ Sci Technol 38:6271–6276

    Article  CAS  Google Scholar 

  23. Bouton D, Escriva H, de Mendonca RL, Glineur C, Bertin B, Noël C, Robinson-Rechavi M, de Groot A, Cornette J, Laudet V, Pierce RJ (2005) J Mol Endocrinol 34:567–582

    Article  CAS  Google Scholar 

  24. Devine C, Hinman VF, Degnan BM (2002) Int J Biol 46:687–692

    CAS  Google Scholar 

  25. Freebern WJ, Osman A, Niles EG, Christen L, LoVerde PT (1999) J Biol Chem 247:4577–4585

    Article  Google Scholar 

  26. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) Cell 68:397–406

    Article  CAS  Google Scholar 

  27. Kamimura M, Fujiwara S, Kawamura K, Yubisui T (2000) Dev Growth Differ 42:1–8

    Article  CAS  Google Scholar 

  28. Kostrouch Z, Kostrouchova M, Love W, Jannini E, Piatigorsky J, Rall JE (1998) Proc Natl Acad Sci USA 95:13442–13447

    Article  CAS  Google Scholar 

  29. Mangelsdorf DJ, Evans RM (1995) Cell 83:841–850

    Article  CAS  Google Scholar 

  30. Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM (1992) Genes Dev 6:329–344

    Article  CAS  Google Scholar 

  31. Nagatomo K, Ishibashi T, Satou Y, Satoh N, Fujiwara S (2003) Mech Dev 120:363–372

    Article  CAS  Google Scholar 

  32. Wiens M, Batel R, Korzhev M, Muller WE (2003) J Exp Biol 206:3261–3271

    Article  CAS  Google Scholar 

  33. Horiguchi T, Nishikawa T, Ohta Y, Shiraishi H, Morita M (2007) Aquat Toxicol 84:379–388

    Article  CAS  Google Scholar 

  34. Horiguchi T, Urushitani H, Ohta Y, Iguchi T, Shiraishi H (2009) Ecotoxicol under review

  35. Horiguchi T (1993) Imposex Caused by Organotin Compounds in Marine Gastropods from Japan [PhD Thesis, in Japanese]. Bunkyo-ku, Tokyo: The University of Tokyo

  36. Yamada H, Takayanagi K (1992) Water Res 26:1589–1595

    Article  CAS  Google Scholar 

  37. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Biotechnol 11:1026–1030

    Article  CAS  Google Scholar 

  38. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Genome Res 6:986–994

    Article  CAS  Google Scholar 

  39. Bryan GW, Bright DA, Hummerstone LG, Burt GR (1993) J Mar Biol Assoc UK 73:889–912

    Article  CAS  Google Scholar 

  40. Horiguchi T, Takiguchi N, Cho HS, Kojima M, Kaya M, Shiraishi H, Morita M, Hirose H, Shimizu M (2000) Mar Environ Res 50:223–229

    Article  CAS  Google Scholar 

  41. Horiguchi T, Shiraishi H, Morita M (2003) [Abstract] SETAC 24th Annual Meeting Abstract Book, p 290

  42. Horiguchi T, Kojima M, Takiguchi N, Kaya M, Shiraishi H, Morita M (2005) Mar Pollut Bull 51:817–822

    Article  CAS  Google Scholar 

  43. Mensink B, Boon JP, ten Hallers-Tjabbes CC, van Hattum B, Koeman JH (1997) Environ Technol 18:1235–1245

    Article  CAS  Google Scholar 

  44. Bock R (1981) In: Gunter FA, Gunter JD (eds) Residue reviews, vol 79. Springer, New York

    Google Scholar 

  45. Lee RF (1985) Mar Environ Res 17:145–148

    Article  CAS  Google Scholar 

  46. Matsuda R, Suzuki T, Saito Y (1993) J Agric Food Chem 41:489–495

    Article  CAS  Google Scholar 

  47. Suzuki T, Kondo K, Uchiyama M, Murayama M (1999) J Agric Food Chem 47:4791–4798

    Article  CAS  Google Scholar 

  48. Horiguchi T, Shiraishi H, Shimizu M, Yamazaki S, Morita M (1995) Mar Pollut Bull 31:402–405

    Article  CAS  Google Scholar 

  49. Horiguchi T, Ohta Y, Nishikawa T, Shiraishi F, Shiraishi H, Morita M (2008) Cell Biol Toxicol 24:553–562

    Article  Google Scholar 

  50. Fent K (1996) Crit Rev Toxicol 26:1–117

    Article  CAS  Google Scholar 

  51. Horiguchi T, Nishikawa T, Ohta Y, Shiraishi H (2008) [Abstract] SETAC Europe 18th Annual Meeting Abstract Book, p 150

  52. Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen C, Rosenberger M, Lovey A (1992) Nature 355:359–361

    Article  CAS  Google Scholar 

  53. Horton C, Maden M (1995) Dev Dyn 202:312–323

    CAS  Google Scholar 

  54. Dmetrichuk JM, Carlone RL, Jones TRB, Vesprini ND, Spencer GE (2008) J Neurosci 28:13014–13024

    Article  CAS  Google Scholar 

  55. Escriva H, Safi R, Hanni C, Langlois MC, Saumitou-Laprade P, Stehelin D, Capron A, Pierce R, Laudet V (1997) Proc Natl Acad Sci USA 94:6803–6808

    Article  CAS  Google Scholar 

  56. Nagatomo K, Fujiwara S (2003) Gene Expr Patterns 3:273–277

    Article  CAS  Google Scholar 

  57. de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, Perlmann T (2000) Science 290:2140–2144

    Article  Google Scholar 

  58. Castro LFC, Lima D, Machado A, Melo C, Hiromori Y, Nishikawa J, Nakanishi T, Reis-Henriques MA, Santos MM (2007) Aquat Toxicol 85:57–66

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported partly by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Scientific Research [B], no. 17380121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Horiguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horiguchi, T., Nishikawa, T., Ohta, Y. et al. Time course of expression of the retinoid X receptor gene and induction of imposex in the rock shell, Thais clavigera, exposed to triphenyltin chloride. Anal Bioanal Chem 396, 597–607 (2010). https://doi.org/10.1007/s00216-009-3230-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3230-x

Keywords

Navigation