Skip to main content

Advertisement

Log in

Human breath analysis: methods for sample collection and reduction of localized background effects

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Solid-phase microextraction (SPME) was applied, in conjunction with gas chromatography–mass spectrometry, to the analysis of volatile organic compounds (VOCs) in human breath samples without requiring exhaled breath condensate collection. A new procedure, exhaled breath vapor (EBV) collection, involving the active sampling and preconcentration of a breath sample with a SPME fiber fitted inside a modified commercial breath-collection device, the RTube™, is described. Immediately after sample collection, compounds are desorbed from the SPME fiber at 250 °C in the GC-MS injector. Experiments were performed using EBV collected at −80 °C and at room temperature, and the results compared to the traditional method of collecting exhaled breath condensate at −80 °C followed by passive SPME sampling of the collected condensate. Methods are compared in terms of portability, ease-of-use, speed of analysis, and detection limits. The need for a clean air supply for the study subjects is demonstrated using several localized sources of VOC contaminants including nail polish, lemonade, and gasoline. Various simple methods to supply clean inhaled air to a subject are presented. Chemical exposures are used to demonstrate the importance of providing cleaned air (organic vapor respirator) or an external air source (tubing stretched to a separate room). These techniques allow for facile data interpretation by minimizing background contaminants. It is demonstrated herein that this active SPME breath-sampling device provides advantages in the forms of faster sample collection and data analysis, apparatus portability and avoidance of power or cooling requirements, and performance for sample collection in a contaminated environment.

Extracted ion chromatograms (XIC m/z 93) of breath samples from a single subject (EBV-RT). One sample was collected over 125 mL of lemonade with no modification to the inhaled air (red trace, top) and another sample was collected over 125 mL of lemonade using a respirator (blue trace, bottom). Peaks labeled are identified as monoterpenes and monoterpene alcohols, flavor ingredients present in lemonade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Exhaled Breath Condensate (2005) Respiratory Research, Inc., Charlottesville

  2. Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN (1999) J Chromatogr B 729:75–88

    Article  CAS  Google Scholar 

  3. Giardina M, Olesik SV (2003) Anal Chem 75:1604–1614

    Article  CAS  Google Scholar 

  4. Pauling L, Robinson AB, Teranish R, Cary P (1971) Proc Natl Acad Sci U S A 68:2374–76

    Article  CAS  Google Scholar 

  5. Mukhopadhyay R (2004) Anal Chem 76:273A–276A

    CAS  Google Scholar 

  6. Namjou K, Roller CB, McCann PJ (2006) IEEE Circuits Devices Mag 22:22–28

    Article  Google Scholar 

  7. Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TAE, Gaston B (2000) Am J Respir Crit Care Med 161:694–499

    CAS  Google Scholar 

  8. Corradi M, Folesani G, Andreoli R, Manini P, Bodini A, Piacentini G, Carraro S, Zanconato S, Baraldi E (2003) Am J Respir Crit Care Med 167:395–399

    Article  Google Scholar 

  9. Wood LG, Gibson PG, Garg ML (2003) Eur Respir J 21:177–186

    Article  CAS  Google Scholar 

  10. Corradi M, Rubinstein I, Andreoli R, Manini P, Caglieri A, Poli D, Alinovi R, Mutti A (2003) Am J Respir Crit Care Med 167:1380–1386

    Article  Google Scholar 

  11. Gonzalez-Reche LM, Kucharczyk A, Musiol AK, Kraus T (2006) Rapid Commun Mass Spectrom 20:2747–2752

    Article  CAS  Google Scholar 

  12. Phillips M, Cataneo RN, Cheema T, Greenberg J (2004) Clin Chim Acta 344:189–194

    Article  CAS  Google Scholar 

  13. Deng C, Zhang J, Yu X, Zhang W, Zhang X (2004) J Chromatogr B 810:269–275

    CAS  Google Scholar 

  14. Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Tietje O, Wong C (2006) Breast Cancer Res Treat 99:19–21

    Article  CAS  Google Scholar 

  15. Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Rahbari-Oskoui F, Wong C (2003) The Breast Journal 9:184–191

    Article  Google Scholar 

  16. Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Naidu A, Rahbari-Oskoui F (2000) J Lab Clin Med 136:243–249

    Article  CAS  Google Scholar 

  17. Phillips M, Altorki N, Austin JHM, Cameron RB, Cataneo RN, Greenberg J, Kloss R, Maxfield RA, Munawar MI, Pass HI, Rashid A, Rom WN, Schmitt P (2007) Cancer Biomarkers 3:95–109

    CAS  Google Scholar 

  18. Phillips M, Cataneo RN, Cummin ARC, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA, Rom WN (2003) Chest 123:2115–2123

    Article  CAS  Google Scholar 

  19. Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, Oneill HJ (1985) Clin Chem 31:1278–1282

    CAS  Google Scholar 

  20. Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, McVay WP (1999) Lancet 353:1930–1933

    Article  CAS  Google Scholar 

  21. Oneill HJ, Gordon SM, Oneill MH, Gibbons RD, Szidon JP (1988) Clin Chem 34:1613–1618

    CAS  Google Scholar 

  22. Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, Bianchi L, Rusca M, Mutti A (2005) Respiratory Research 6:71.

  23. Di Natale C, Macagnano A, Martinelli E, Paolesse R, D'Arcangelo G, Roscioni C, Finazzi-Agro A, D'Amico A (2003) Biosens Bioelectron 18:1209–1218

    Article  Google Scholar 

  24. Phillips M, Cataneo RN, Condos R, Erickson GAR, Greenberg J, La Bombardi V, Munawar MI, Tietje O (2007) Tuberculosis 87:44–52

    Article  CAS  Google Scholar 

  25. Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L (2005) J Chromatogr A 1084:145–151

    Article  CAS  Google Scholar 

  26. Phillips M, Boehmer JP, Cataneo RN, Cheema T, Eisen HJ, Fallon JT, Fisher PE, Gass A, Greenberg J, Kobashigawa J, Mancini D, Rayburn B, Zucker MJ (2004) Am J Cardiol 94:1593–1594

    Article  CAS  Google Scholar 

  27. Phillips M, Boehmer JP, Cataneo RN, Cheema T, Eisen HJ, Fallon JT, Fisher PE, Gass A, Greenberg J, Kobashigawa J, Mancini D, Rayburn B, Zucker MJ (2004) J Heart Lung Transplant 23:701–708

    Article  Google Scholar 

  28. Sobotka PA, Gupta DK, Lansky DM, Costanzo MR, Zarling EJ (1994) J Heart Lung Transplant 13:224–229

    CAS  Google Scholar 

  29. Amorim LCA, Cardeal ZDL (2007) J Chromatogr B 853:1–9

    Article  CAS  Google Scholar 

  30. Chinery RL, Gleason AK (1993) Risk Analysis 13:51–62.

  31. Giardino NJ, Gordon SM, Brinkman MC, Callahan PJ, Kenny DV (1999) Epidemiology 10:S72–S72

    Google Scholar 

  32. Lindstrom AB, Pleil JD (1996) J Air Waste Manage Assoc 46:676–682

    CAS  Google Scholar 

  33. Lindstrom AB, Pleil JD, Berkoff DC (1997) Environ Health Perspect 105:636–642

    Article  CAS  Google Scholar 

  34. Maniscalco M, De Laurentiis G, Pentella C, Mormile M, Sanduzzi A, Carratu P, Sofia M (2006) Biomarkers 11:233–240

    Article  CAS  Google Scholar 

  35. Raymer JH, Pellizzari ED, Thomas KW, Cooper SD (1991) J Expo Anal Environ Epidemiol 1:439–451

    CAS  Google Scholar 

  36. Wallace LA (2001) Annu Rev Energy Environ 26:269–301

    Article  Google Scholar 

  37. Wallace L, Pellizzari E, Gordon S (1993) J Expo Anal Environ Epidemiol 3:75–102

    CAS  Google Scholar 

  38. Wallace L (1996) Environ Health Perspect 104:1129–1136

    Article  CAS  Google Scholar 

  39. Cunningham S, McColm JR, Ho LP, Greening AP, Marshall TG (2000) Eur Respir J 15:955–957

    Article  CAS  Google Scholar 

  40. Soyer OU, Dizdar EA, Keskin O, Lilly C, Kalayci O (2006) Allergy 61:1016–1018

    Article  CAS  Google Scholar 

  41. Reinhold P, Jaeger J, Schroeder C (2006) Biomarkers 11:118–142

    Article  CAS  Google Scholar 

  42. Vass G, Huszar E, Barat E, Valyon M, Kiss D, Penzes L, Augusztinovicz M, Horvath I (2003) Am J Respir Crit Care Med 167:850–855

    Article  Google Scholar 

  43. Skeldon KD, Patterson C, Wyse CA, Gibson GM, Padgett MJ, Longbottom C, McMillan LC (2005) J Opt A 7:S376–S384

    CAS  Google Scholar 

  44. Lord H, Yu YF, Segal A, Pawliszyn J (2002) Anal Chem 74:5650–5657

    Article  CAS  Google Scholar 

  45. Ma W, Liu XY, Pawliszyn J (2006) Anal Biochem 385:1398–1408

    CAS  Google Scholar 

  46. Yu H, Xu L, Wang P (2005) J Chromatogr B 826:69–74

    Article  CAS  Google Scholar 

  47. Lawson LD, Wang ZJ (2005) J Agric Food Chem 53:1974–1983

    Article  CAS  Google Scholar 

  48. Giardina M, Olesik SV (2003) Anal Chem 75:1604–1614

    Article  CAS  Google Scholar 

  49. Phillips M (1992) Int Arch Occup Environ Health 64:119–123

    Article  CAS  Google Scholar 

  50. Wallace LA, Pellizzari ED (1995) Environ Health Perspect 103:95–98

    Article  CAS  Google Scholar 

  51. NIOX Flex: Technical Specification Aerocrine AB, Solna, Sweden.

  52. Ohira SI, Li JH, Lonneman WA, Dasgupta PK, Toda K (2007) Anal Chem 79:2641–2649

    Article  CAS  Google Scholar 

  53. Walsh J (2004) Spectroscopy 19:49–50

    Google Scholar 

  54. Frishman G, Tzanani N, Amirav A (2001) Field Anal Chem Tech 5:107–115

    Article  CAS  Google Scholar 

  55. Libardoni M, Stevens PT, Waite JH, Sacks R (2006) J Chromatogr B 842:13–21

    Article  CAS  Google Scholar 

  56. Gordin A, Amirav A (2000) J Chromatogr A 903:155–172

    Article  CAS  Google Scholar 

  57. Phillips M (1997) Anal Biochem 247:272–278

    Article  CAS  Google Scholar 

  58. Sanchez JM, Sacks RD (2003) Anal Chem 75:2231–2236

    Article  CAS  Google Scholar 

  59. Sanchez JM, Sacks RD (2006) Anal Chem 78:3046–3054

    Article  CAS  Google Scholar 

  60. Raymer JH, Pellizzari ED, Thomas KW, Kizakevich P, Cooper SD (1992) J Expo Anal Environ Epidemiol 2:67–83

    Google Scholar 

  61. Statheropoulos M, Agapiou A, Georgiadou A (2006) J Chromatogr B 832:274–279

    Article  CAS  Google Scholar 

  62. Phillips M, Cataneo RN, Greenberg J, Grodman R, Gunawardena R, Naidu A (2003) Eur Respir J 21:48–51

    Article  CAS  Google Scholar 

  63. Phillips M, Greenberg J, Cataneo RN (2000) Free Radic Res 33:57–63

    Article  CAS  Google Scholar 

  64. Menssana Research, Inc.:Breathtaking Technology (2007) Newark

  65. Grote C, Pawliszyn J (1997) Anal Chem 69:587–596

    Article  CAS  Google Scholar 

  66. Phillips M, Greenberg J (1992) Clin Chem 38:60–65

    CAS  Google Scholar 

  67. Wallace L, Buckley T, Pellizzari E, Gordon S (1996) Environ Health Perspect 104:861–869

    Article  CAS  Google Scholar 

  68. Raymer JH, Thomas KW, Cooper SD, Whitaker DA, Pellizzari ED (1990) J Anal Toxicol 14:337–344

    CAS  Google Scholar 

  69. Effros RM, Biller J, Foss B, Hoagland K, Dunning MB, Castillo D, Bosbous M, Sun F, Shaker R (2003) Am J Respir Crit Care Med 168:1500–1505

    Article  Google Scholar 

  70. Wanner A, Mendes ES, Atkins ND (2006) J Appl Physiol 100:1674–1678

    Article  Google Scholar 

  71. Muhlberger F, Streibel T, Wieser J, Ulrich A, Zimmermann R (2005) Anal Chem 77:7408–7414

    Article  CAS  Google Scholar 

  72. Thrall K (2006) In: Donnelly KC, Cizmas LH (eds) Environmental health in central and Eastern Europe. Springer, Dordrecht

    Google Scholar 

  73. Phillips M, Greenberg J, Awad J (1994) J Clin Pathol 47:1052–1053

    Article  CAS  Google Scholar 

  74. Phillips M, Greenberg J, Sabas M (1994) Free Radic Res 20:333–337

    Article  CAS  Google Scholar 

  75. Palsson BP, Hubbell JA, Plonsey R, Bronzino JD (2003) Tissue engineering. CRC, San Diego

    Google Scholar 

  76. Ahluwalia VK, Parashar RK (2005) Organic reaction mechanisms. Alpha Science, Harrow

    Google Scholar 

  77. (2003) Knovel Critical Tables; Knovel.

  78. Wickstrom E (1988) Camphor; INCHEM.

Download references

Acknowledgments

Financial support from an LLNL Laboratory-Directed Research and Development (LDRD) grant 05-ERD-053 and a Defense Advanced Research Project Agency (DARPA) seedling project is greatly appreciated. This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. A.N.M. performed this research in part while on appointment as a U.S. Department of Homeland Security (DHS) Fellow under the DHS Scholarship and Fellowship Program, administered by the Oak Ridge Institute for Science and Education (ORISE) for DHS through an interagency agreement with DOE. ORISE is managed by Oak Ridge Associated Universities under DOE contract number DE-AC05-06OR23100. All opinions expressed in this paper are the authors’ and do not necessarily reflect the policies and views of DHS, DOE, or ORISE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Farquar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, A.N., Farquar, G.R., Jones, A.D. et al. Human breath analysis: methods for sample collection and reduction of localized background effects. Anal Bioanal Chem 396, 739–750 (2010). https://doi.org/10.1007/s00216-009-3217-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3217-7

Keywords

Navigation