Skip to main content
Log in

Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A colloidal synthesis method was developed to produce face centered cubic (fcc) Cu nanoparticles in the presence of surfactants in an organic solvent under an Ar environment. Various synthetic conditions were explored to control the size of the as-prepared nanoparticles by changing the precursor, varying the amount of surfactants, and tuning the reaction temperature. Transmission electron microscopy (TEM), selected-area electron diffraction, and high-resolution TEM were used as the main characterization tools. Upon exposure to air, these nanoparticles are oxidized at different levels depending on their sizes: (1) an inhomogeneous layer of fcc Cu2O forms at the surface of Cu nanoparticles (about 30 nm); (2) Cu nanoparticles (about 5 nm) are immediately oxidized into fcc Cu2O nanoparticles (about 6 nm). The occurrence of these different levels of oxidization demonstrates the reactive nature of Cu nanoparticles and the effect of size on their reactivity. Furthermore, utilization of their chemical reactivity and conversion of spherical Cu nanoparticles into CuS nanoplates through the nanoscale Kirkendall effect were demonstrated. The oxidization and sulfidation of Cu nanoparticles were compared. Different diffusion and growth behaviors were involved in these two chemical transformations, resulting in the formation of isotropic Cu2O nanoparticles during oxidization and anisotropic CuS nanoplates during sulfidation.

Transmission electron microscopy images of Cu nanoparticles (left), Cu2O nanoparticles (middle), and CuS nanoplates (right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yin Y, Alivisatos AP (2005) Nature 437:664–670

    Article  CAS  Google Scholar 

  2. Tao AR, Habas S, Yang PD (2008) Small 4:310–325

    Article  CAS  Google Scholar 

  3. Xia Y, Xiong YJ, Lim B, Skrabalak SE (2009) Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  4. Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711–714

    Article  CAS  Google Scholar 

  5. Yin YD, Erdonmez CK, Cabot A, Hughes S, Alivisatos AP (2006) Adv Funct Mater 16:1389–1399

    Article  CAS  Google Scholar 

  6. Cabot A, Puntes VF, Shevchenko E, Yin Y, Balcells L, Marcus MA, Hughes SM, Alivisatos AP (2007) J Am Chem Soc 129:10358–10360

    Article  CAS  Google Scholar 

  7. Cabot A, Smith RK, Yin YD, Zheng HM, Reinhard BM, Liu HT, Alivisatos AP (2008) ACS Nano 2:1452–1458

    Article  CAS  Google Scholar 

  8. Lewinski N, Colvin V, Drezek R (2008) Small 4:26–49

    Article  CAS  Google Scholar 

  9. Grassian VH (2008) J Phys Chem C 112:18303–18313

    CAS  Google Scholar 

  10. Lisiecki I, Pileni MP (1993) J Am Chem Soc 115:3887–3896

    Article  CAS  Google Scholar 

  11. Tanori J, Pileni MP (1997) Langmuir 13:639–646

    Article  CAS  Google Scholar 

  12. Salzemann C, Lisiecki I, Brioude A, Urban J, Pileni MP (2004) J Phys Chem B 108:13242–13248

    Article  CAS  Google Scholar 

  13. Salzemann C, Lisiecki L, Urban J, Pileni MP (2004) Langmuir 20:11772–11777

    Article  CAS  Google Scholar 

  14. Murray CB, Kagan CR, Bawendi MG (2000) Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  15. Yin M, Wu CK, Lou YB, Burda C, Koberstein JT, Zhu YM, O'Brien S (2005) J Am Chem Soc 127:9506–9511

    Article  CAS  Google Scholar 

  16. Mott D, Galkowski J, Wang LY, Luo J, Zhong CJ (2007) Langmuir 23:5740–5745

    Article  CAS  Google Scholar 

  17. Cheng GJ, Carter JD, Guo T (2004) Chem Phys Lett 400:122–127

    Article  CAS  Google Scholar 

  18. Cheng GJ, Romero D, Fraser GT, Walker ARH (2005) Langmuir 21:12055–12059

    Article  CAS  Google Scholar 

  19. Cheng GJ, Dennis CL, Shull RD, Walker ARH (2007) Langmuir 23:11740–11746

    Article  CAS  Google Scholar 

  20. Cheng GJ, Shull RD, Walker ARH (2009) J Magn Magn Mater 321:1351–1355

    Article  CAS  Google Scholar 

  21. Cheng GJ, Dennis CL, Shull RD, Walker ARH (2009) Cryst Growth Des 9:3714–3720

    Article  CAS  Google Scholar 

  22. Cheng GJ, Puntes VF, Guo T (2006) J Colloid Interface Sci 293:430–436

    Article  CAS  Google Scholar 

  23. Bruneval F, Vast N, Reining L, Izquierdo M, Sirotti F, Barrett N (2006) Phys Rev Lett 97:267601

    Article  Google Scholar 

  24. Gou LF, Murphy CJ (2003) Nano Lett 3:231–234

    Article  CAS  Google Scholar 

  25. Zhao YX, Pan HC, Lou YB, Qiu XF, Zhu JJ, Burda C (2009) J Am Chem Soc 131:4253–4261

    Article  CAS  Google Scholar 

  26. Wang ZL (2000) J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  27. Ding Y, Wang ZL (2004) J Phys Chem B 108:12280–12291

    Article  CAS  Google Scholar 

  28. Lide DR (ed) (2008) CRC handbook of chemistry and physics, 88th edn. CRC, Boca Raton

    Google Scholar 

  29. Wang KJ, Li GD, Li JX, Wang Q, Chen JS (2007) Cryst Growth Des 7:2265–2267

    Article  CAS  Google Scholar 

  30. Ghezelbash A, Korgel BA (2005) Langmuir 21:9451–9456

    Article  CAS  Google Scholar 

  31. Goncalves AP, Lopes EB, Casaca A, Dias M, Almeida M (2008) J Cryst Growth 310:2742–2745

    Article  CAS  Google Scholar 

  32. Li BX, Xie Y, Xue Y (2007) J Phys Chem C 111:12181–12187

    Article  CAS  Google Scholar 

  33. Lofton C, Sigmund W (2005) Adv Funct Mater 15:1197–1208

    Article  CAS  Google Scholar 

  34. Ascencio JA, Gutierrez-Wing C, Espinosa ME, Marin M, Tehuacanero S, Zorrilla C, Jose-Yacaman M (1998) Surf Sci 396:349–368

    Article  CAS  Google Scholar 

  35. Hofmeister H (1998) Cryst Res Technol 33:3–25

    Article  CAS  Google Scholar 

  36. Palkar VR, Ayyub P, Chattopadhyay S, Multani M (1996) Phys Rev B 53:2167–2170

    Article  CAS  Google Scholar 

  37. Tang Y, Ouyang M (2007) Nat Mater 6:754–759

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Li-Chung Lai and Wen-An Chiou for their help with TEM measurements. We acknowledge the support of the Maryland NanoCenter and its NispLab. The NispLab is supported in part by the NSF as an MRSEC Shared Experimental Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjun Cheng.

Additional information

Disclaimer

We identify certain commercial equipment, instruments, and materials in this article to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, G., Hight Walker, A.R. Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity. Anal Bioanal Chem 396, 1057–1069 (2010). https://doi.org/10.1007/s00216-009-3203-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3203-0

Keywords

Navigation