Skip to main content

Advertisement

Log in

Structural characterization of ß-amyloid oligomer-aggregates by ion mobility mass spectrometry and electron spin resonance spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Formation and accumulation of fibrillar plaques and aggregates of ß-amyloid peptide (Aß) in brain have been recognized as characteristics of Alzheimer’s disease (AD). Oligomeric aggregates of Aß are considered critical intermediates leading to progressive neurodegeneration; however, molecular details of the oligomerization and aggregation pathway and the structures of Aß-oligomers are hitherto unclear. Using an in vitro fibril formation procedure of Aß(1–40), ß-amyloid aggregates were prepared and insoluble aggregates separated from soluble products by centrifugation. In this study, ion mobility mass spectrometry (IM-MS) was applied in combination with electron paramagnetic resonance spectroscopy (EPR) to the identification of the components of Aß-oligomers, and to their structural and topographical characterization. The formation of Aß-oligomers and aggregates was monitored by gel electrophoresis, and Aß-oligomer bands were identified by in-gel tryptic digestion and matrix-assisted laser desorption ionization–mass spectrometry (MALDI-MS) to consist predominantly of Aß(1–40) peptide. First, ion mobility-MS studies of soluble Aß-aggregates prepared by incubation for 5 days were performed on a quadrupole time-of-flight mass spectrometer and revealed (1) the presence of at least two different conformational states, and (2), the formation of Met-35 oxidized products. For estimation of the size of Aß-aggregates using EPR spectroscopy, a modified Aß(1–40) peptide containing an additional N-terminal cysteine residue was prepared, and a 3-(2-iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy radical spin label derivative (IPSL) was coupled by S-alkylation. The EPR spectra of the spin-labeled Cys-Aß(1–40) oligomers were matched with spectra simulations using a multi-component simulation strategy, resulting in complete agreement with the gel electrophoresis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jakobsen LD, Jensen PH (2003) Methods Mol Biol 232:57–66

    CAS  Google Scholar 

  2. Morgan D (2006) J Alzheimers Dis 9:425–432

    CAS  Google Scholar 

  3. Uversky VN (2007) J Neurochem 103:17–37

    CAS  Google Scholar 

  4. Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2009) Prog Neurobiol 87:181–194

    Article  CAS  Google Scholar 

  5. Crews L, Tsigelny I, Hashimoto M, Masliah E (2009) Neurotox. Res in press

  6. Hull M, Berger M, Heneka M (2006) Drugs 66:2075–2093

    Article  Google Scholar 

  7. Gardberg AS, Dice LT, Ou S, Rich RL, Helmbrecht E, Ko J, Wetzel R, Myszka DG, Patterson PH, Dealwis C (2007) Proc Natl Acad Sci USA 104:15659–15664

    Article  CAS  Google Scholar 

  8. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R (2005) Proc Natl Acad Sci USA 102:17342–17347

    Article  CAS  Google Scholar 

  9. McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M, French JE, Lambermon MH, Darabie AA, Brown ME, Janus C, Chishti MA, Horne P, Westaway D, Fraser PE, Mount HT, Przybylski M, St George-Hyslop P (2002) Nature Med 8:1263–1269

    Article  CAS  Google Scholar 

  10. Solomon B (2007) Drugs Today (Barc) 43:333–342

    Article  Google Scholar 

  11. Grau S, Baldi A, Bussani R, Tian X, Stefanescu R, Przybylski M, Richards P, Jones SA, Shridhar V, Clausen T, Ehrmann M (2005) Proc Natl Acad Sci USA 102:6021–6026

    Article  CAS  Google Scholar 

  12. Dodel R, Hampel H, Depboylu C, Lin S, Gao F, Schock S, Jackel S, Wei X, Buerger K, Hoft C, Hemmer B, Moller HJ, Farlow M, Oertel WH, Sommer N, Du Y (2002) Ann Neurol 52:253–256

    Article  CAS  Google Scholar 

  13. Stefanescu R, Iacob RE, Damoc EN, Marquardt A, Amstalden E, Manea M, Perdivara I, Maftei M, Paraschiv G, Przybylski M (2007) Eur J Mass Spectrom (Chichester, Eng) 13:69–75

    Article  CAS  Google Scholar 

  14. Manea M, Hudecz F, Przybylski M, Mezo G (2005) Bioconj Chem 16:921–928

    Article  CAS  Google Scholar 

  15. Perdivara I, Deterding LJ, Cozma C, Tomer KB, Przybylski M (2009) Glycobiology, in press

  16. Juszczyk P, Paraschiv G, Szymanska A, Kolodziejczyk AS, Rodziewicz-Motowidlo S, Grzonka Z, Przybylski M (2009) J Med Chem 52:2420–2428

    Article  CAS  Google Scholar 

  17. Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV (2008) Nature Prot 3:1139–1152

    Article  CAS  Google Scholar 

  18. Ruotolo BT, Hyung SJ, Robinson PM, Giles K, Bateman RH, Robinson CV (2007) Angew Chem Int Ed Engl 46:8001–8004

    Article  CAS  Google Scholar 

  19. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) J Mass Spectrom 43:1–22

    Article  CAS  Google Scholar 

  20. Trimpin S, Clemmer DE (2008) Anal Chem 80:9073–9083

    Article  CAS  Google Scholar 

  21. Henderson SC, Valentine SJ, Counterman AE, Clemmer DE (1999) Anal Chem 71:291–301

    Article  CAS  Google Scholar 

  22. Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE (1998) Anal Chem 70:2236–2242

    Article  CAS  Google Scholar 

  23. Zhou M, Sandercock AM, Fraser CS, Ridlova G, Stephens E, Schenauer MR, Yokoi-Fong T, Barsky D, Leary JA, Hershey JW, Doudna JA, Robinson CV (2008) Proc Natl Acad Sci USA 105:18139–18144

    Article  CAS  Google Scholar 

  24. Drescher M, Godschalk F, Veldhuis G, van Rooijen BD, Subramaniam V, Huber M (2008) Chembiochem 9:2411–2416

    Article  CAS  Google Scholar 

  25. Drescher M, Veldhuis G, van Rooijen BD, Milikisyants S, Subramaniam V, Huber M (2008) J Am Chem Soc 130:7796–7797

    Article  CAS  Google Scholar 

  26. Murakami K, Hara H, Masuda Y, Ohigashi H, Irie K (2007) Chembiochem 8:2308–2314

    Article  CAS  Google Scholar 

  27. Torok M, Milton S, Kayed R, Wu P, McIntire T, Glabe CG, Langen R (2002) J Biol Chem 277:40810–40815

    Article  Google Scholar 

  28. Zager SA, Freed JH (1982) J Chem Phys 77:3344–3349

    Article  CAS  Google Scholar 

  29. Le Meste M, Voilley A (1988) J Phys Chem 92:1612–1616

    Article  Google Scholar 

  30. Jeschke G (2002) ChemPhysChem 3:927–932

    Article  CAS  Google Scholar 

  31. Kirby TL, Karim CB, Thomas DD (2004) Biochemistry 43:5842–5852

    Article  CAS  Google Scholar 

  32. Gettins P, Beth AH, Cunningham LW (1988) Biochemistry 27:2905–2911

    Article  CAS  Google Scholar 

  33. Stoll S, Schweiger A (2006) J Magnet Resonance 178:42–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marilena Manea and Marcel Leist for expert help with the synthesis of spin-labeled Aß-peptide derivatives, and critical discussion of the manuscript, and Martin Spitzbarth for help with the EPR simulations. This work was supported by the International Research Center “Proteostasis” at the University of Konstanz, and by the Deutsche Forschungsgemeinschaft, Bonn, Germany (DR 743/2-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Malte Drescher or Michael Przybylski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iuraşcu, M.I., Cozma, C., Tomczyk, N. et al. Structural characterization of ß-amyloid oligomer-aggregates by ion mobility mass spectrometry and electron spin resonance spectroscopy. Anal Bioanal Chem 395, 2509–2519 (2009). https://doi.org/10.1007/s00216-009-3164-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3164-3

Keywords

Navigation