Skip to main content
Log in

Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid–liquid microextraction

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid–liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72–100% for table grapes and 66–105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64–75% and 58–66%, respectively). Limits of detection (LODs) were in the range 0.651–5.44 µg/kg for table grapes and 0.902–6.33 µg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmed FE (2001) Trends in Anal Chem 20:649–661

    Article  CAS  Google Scholar 

  2. Sagratini G, Mañes J, Giardiná D, Damiani P, Picó Y (2007) J Chromatogr A 1147:135–143

    Article  CAS  Google Scholar 

  3. Lambropoulou DA, Albanis TA (2007) J Biochem Biophys Methods 70:195–228

    Article  CAS  Google Scholar 

  4. Rezaee M, Assadi Y, Milani-Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  5. Kozani RR, Assadi Y, Shemirani F, Milani-Hosseini MR, Jamali MR (2007) Chromatographia 66:81–86

    Article  Google Scholar 

  6. Fu LY, Liu XJ, Hu J, Zhao XN, Wang HL, Wang XD (2009) Anal Chim Acta 632:289–295

    Article  CAS  Google Scholar 

  7. Tsai WC, Huang SD (2009) J Chromatography A 1216:5171–5175

    Article  CAS  Google Scholar 

  8. Zhao RS, Diao CP, Chen QF, Wang X (2009) J Sep Sci 32:1069–1074

    Article  CAS  Google Scholar 

  9. Moinfar S, Milani-Hossein MR (2009) J Hazard Mat 169:907–911

    Article  CAS  Google Scholar 

  10. Xiong J, Hu B (2008) J Chromatogr A 1193:7–18

    Article  CAS  Google Scholar 

  11. Wu Q, Li Y, Wang C, Liu Z, Zang X, Zhou X, Wang Z (2009) Anal Chim Acta 638:139–145

    Article  CAS  Google Scholar 

  12. Zang X, Wang J, Wang O, Wang M, Ma J, Xi G, Wang Z (2008) Anal Bioanal Chem 392:749–754

    Article  CAS  Google Scholar 

  13. Zhao E, Zhao W, Han L, Jiang S, Zhou Z (2007) J Chromatogr A 1175:137–140

    Article  CAS  Google Scholar 

  14. Ravelo-Pérez LM, Hernández-Borges J, Asensio-Ramos M, Rodríguez-Delgado MA (2009) J Chromatogr A, in press, doi:10.1016/j.chroma.2009.08.012

  15. Liu JF, Jönsson JA, Jiang GB (2005) Trends Anal Chem 24:20–27

    Article  Google Scholar 

  16. Buszewski B, Studzinska S (2008) Chromatographia 68:1–10

    Article  CAS  Google Scholar 

  17. Chiappe C, Pieraccini D (2005) J Phys Org Chem 18:275–297

    Article  CAS  Google Scholar 

  18. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) J Chromatogr A 1216:885–891

    Article  CAS  Google Scholar 

  19. Zhou Q, Bai H, Xie G, Xiao J (2008) J Chromatogr A 1177:43–49

    Article  CAS  Google Scholar 

  20. Zhou Q, Bai H, Xie G, Xiao J (2008) J Chromatogr A 1188:148–153

    Article  CAS  Google Scholar 

  21. Ravelo-Pérez LM, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MA (2008) J Chromatogr A 1185:151–154

    Article  Google Scholar 

  22. Ravelo-Pérez LM, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MA (2009) Food Chem 111:764–770

    Article  Google Scholar 

  23. Poole CF (2007) J Chromatogr A 1158:241–250

    Article  CAS  Google Scholar 

  24. Cunha SC, Fernandes JO, Alves A, Oliveira MBPP (2009) J Chromatogr A 1216:119–126

    Article  CAS  Google Scholar 

  25. Lesueur C, Knittl P, Gartner M, Mentler A, Fuerhacker M (2008) Food Control 19:906–914

    Article  CAS  Google Scholar 

  26. Saito Y, Kodama S, Matsunaga A (2004) J AOAC Int 87:1356–1367

    CAS  Google Scholar 

  27. Banerjee K, Oulkar DP, Dasgupta S, Patil SB, Patil SH, Savant R, Adsule PG (2007) J Chromatogr A 1173:98–109

    Article  CAS  Google Scholar 

  28. Barnes KA, Fussell RJ, Startin JR, Pegg MK, Thorpe SA, Reynolds SL (1997) Rapid Comm Mass Spectrom 11:117–123

    Article  CAS  Google Scholar 

  29. Fernández M, Picó Y, Mañes J (2000) J Chromatogr A 871:43–56

    Article  Google Scholar 

  30. Hiemstra M, de Kok A (2007) J Chromatogr A 1154:3–25

    Article  CAS  Google Scholar 

  31. Juan-García A, Mañes J, Font G, Picó Y (2004) J Chromatogr A 1050:119–127

    Google Scholar 

  32. Ortelli D, Edder P, Corvi C (2004) Anal Chim Acta 520:33–45

    Article  CAS  Google Scholar 

  33. Miller JC, Miller JN (2002) Statistics and chemometrics for chemical analysis, 4th edn. Prentice Hall, Madrid

    Google Scholar 

  34. Royal Decree 290/2003 of 7th March 2003 (Spanish State Official Bulletin from the 8th March 2003). Madrid

Download references

Acknowledgments

L.M.R.P. and A.V.H.H. wish to thank the Spanish Ministry of Education for the FPU grant at the University of La Laguna. J.H.B. also thanks the Spanish Ministry of Science and Innovation for the Ramón y Cajal contract at the University of La Laguna. This work has been supported by the Spanish Ministry of Science and Innovation (Project AGL2008-00990/ALI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Rodríguez-Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravelo-Pérez, L.M., Hernández-Borges, J., Herrera-Herrera, A.V. et al. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid–liquid microextraction. Anal Bioanal Chem 395, 2387–2395 (2009). https://doi.org/10.1007/s00216-009-3133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3133-x

Keywords

Navigation